Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2 (original) (raw)

References

  1. Mayer, M.P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  2. Morano, K.A. New tricks for an old dog: the evolving world of Hsp70. Ann. NY Acad. Sci. 1113, 1–14 (2007).
    Article CAS PubMed Google Scholar
  3. Qiu, X.B., Shao, Y.M., Miao, S. & Wang, L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560–2570 (2006).
    Article CAS PubMed Google Scholar
  4. Cyr, D.M. Swapping nucleotides, tuning Hsp70. Cell 133, 945–947 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  5. Young, J.C., Barral, J.M. & Ulrich Hartl, F. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003).
    Article CAS PubMed Google Scholar
  6. Takayama, S. & Reed, J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell Biol. 3, E237–E241 (2001).
    Article CAS PubMed Google Scholar
  7. Takayama, S., Xie, Z. & Reed, J.C. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274, 781–786 (1999).
    Article CAS PubMed Google Scholar
  8. Sondermann, H. et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553–1557 (2001).
    Article CAS PubMed Google Scholar
  9. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16, 5891–5900 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  10. Dai, Q. et al. Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J. Biol. Chem. 280, 38673–38681 (2005).
    Article CAS PubMed Google Scholar
  11. Briknarova, K. et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat. Struct. Biol. 8, 349–352 (2001).
    Article CAS PubMed Google Scholar
  12. Kleinjung, J. & Fraternali, F. POPSCOMP: an automated interaction analysis of biomolecular complexes. Nucleic Acids Res. 33, W342–W346 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  13. Flaherty, K.M., DeLuca-Flaherty, C. & McKay, D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628 (1990).
    Article CAS PubMed Google Scholar
  14. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  15. Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435 (1997).
    Article CAS PubMed Google Scholar
  16. Polier, S., Dragovic, Z., Hartl, F.U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008).
    Article CAS PubMed Google Scholar
  17. Shomura, Y. et al. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17, 367–379 (2005).
    CAS PubMed Google Scholar
  18. Schuermann, J.P. et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  19. Gassler, C.S., Wiederkehr, T., Brehmer, D., Bukau, B. & Mayer, M.P. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276, 32538–32544 (2001).
    Article CAS PubMed Google Scholar
  20. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3, 100–105 (2001).
    Article CAS PubMed Google Scholar
  21. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).
    Article CAS PubMed Google Scholar
  22. Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).
    Article CAS PubMed Google Scholar
  23. Hu, J. et al. The crystal structure of the putative peptide-binding fragment from the human Hsp40 protein Hdj1. BMC Struct. Biol. 8, 3 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  24. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  25. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).
    Article CAS PubMed Google Scholar
  26. Ludlam, A.V., Moore, B.A. & Xu, Z. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101, 13436–13441 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  27. Ehrnsperger, M., Lilie, H., Gaestel, M. & Buchner, J. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274, 14867–14874 (1999).
    Article CAS PubMed Google Scholar
  28. Haley, D.A., Horwitz, J. & Stewart, P.L. The small heat-shock protein, αb-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35 (1998).
    Article CAS PubMed Google Scholar
  29. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  30. Murata, S., Chiba, T. & Tanaka, K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int. J. Biochem. Cell Biol. 35, 572–578 (2003).
    Article CAS PubMed Google Scholar
  31. Walker, V.E., Atanasiu, R., Lam, H. & Shrier, A. Co-chaperone FKBP38 promotes HERG trafficking. J. Biol. Chem. 282, 23509–23516 (2007).
    Article CAS PubMed Google Scholar
  32. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999).
    Article CAS PubMed Google Scholar
  33. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).
    Article CAS PubMed Google Scholar
  34. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).
    Article PubMed Google Scholar
  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article PubMed Google Scholar
  36. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article CAS PubMed Google Scholar
  37. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  38. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  39. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
    Article CAS PubMed Google Scholar
  40. Schleucher, J. et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306 (1994).
    Article CAS PubMed Google Scholar
  41. Grzesiek, S., Stahl, S.J., Wingfield, P.T. & Bax, A. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256–10261 (1996).
    Article CAS PubMed Google Scholar

Download references