Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes (original) (raw)
References
Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCAS Google Scholar
Goldberg, A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans.35, 12–17 (2007). ArticleCAS Google Scholar
Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol.5, 177–187 (2004). ArticleCAS Google Scholar
Inobe, T. & Matouschek, A. Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol.18, 43–51 (2008). ArticleCAS Google Scholar
Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol.22, 159–180 (2006). ArticleCAS Google Scholar
Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol.7, 742–749 (2005). ArticleCAS Google Scholar
Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature453, 481–488 (2008). ArticleCAS Google Scholar
Burns, K.E., Liu, W.T., Boshoff, H.I., Dorrestein, P.C. & Barry, C.E., III. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem.284, 3069–3075 (2009). ArticleCAS Google Scholar
Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P. & Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis . Science322, 1104–1107 (2008). ArticleCAS Google Scholar
Lin, G. et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol.59, 1405–1416 (2006). ArticleCAS Google Scholar
Tamura, T. et al. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus . Curr. Biol.5, 766–774 (1995). ArticleCAS Google Scholar
Darwin, K.H., Lin, G., Chen, Z., Li, H. & Nathan, C.F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol.55, 561–571 (2005). ArticleCAS Google Scholar
Pearce, M.J. et al. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J.25, 5423–5432 (2006). ArticleCAS Google Scholar
Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N. & Nathan, C.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science302, 1963–1966 (2003). ArticleCAS Google Scholar
Zhang, X. et al. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J. Struct. Biol.146, 155–165 (2004). ArticleCAS Google Scholar
Festa, R.A., Pearce, M.J. & Darwin, K.H. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis . J. Bacteriol.189, 3044–3050 (2007). ArticleCAS Google Scholar
Iyer, L.M., Burroughs, A.M. & Aravind, L. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol. Direct3, 45 (2008). Article Google Scholar
Li, Z. et al. The crystal structure of MCAT from Mycobacterium tuberculosis reveals three new catalytic models. J. Mol. Biol.371, 1075–1083 (2007). ArticleCAS Google Scholar
Abbott, J.J. et al. Structure prediction and active site analysis of the metal binding determinants in γ-glutamylcysteine synthetase. J. Biol. Chem.276, 42099–42107 (2001). ArticleCAS Google Scholar
Jez, J.M., Cahoon, R.E. & Chen, S. Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J. Biol. Chem.279, 33463–33470 (2004). ArticleCAS Google Scholar
Unno, H. et al. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J. Biol. Chem.281, 29287–29296 (2006). ArticleCAS Google Scholar
Hibi, T. et al. Crystal structure of γ-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc. Natl. Acad. Sci. USA101, 15052–15057 (2004). ArticleCAS Google Scholar
Ronzio, R.A. & Meister, A. Phosphorylation of methionine sulfoximine by glutamine synthetase. Proc. Natl. Acad. Sci. USA59, 164–170 (1968). ArticleCAS Google Scholar
Ronzio, R.A., Rowe, W.B. & Meister, A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry8, 1066–1075 (1969). ArticleCAS Google Scholar
Abbott, J.J., Ford, J.L. & Phillips, M.A. Substrate binding determinants of Trypanosoma brucei γ-glutamylcysteine synthetase. Biochemistry41, 2741–2750 (2002). ArticleCAS Google Scholar
Huang, C.S., Moore, W.R. & Meister, A. On the active site thiol of γ-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation. Proc. Natl. Acad. Sci. USA85, 2464–2468 (1988). ArticleCAS Google Scholar
Tu, Z. & Anders, M.W. Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis. Biochem. J.336, 675–680 (1998). ArticleCAS Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). ArticleCAS Google Scholar
Daugelat, S. et al. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect.5, 1082–1095 (2003). ArticleCAS Google Scholar
Levitzki, A. Determination of submicro quantities of ammonia. Anal. Biochem.33, 335–340 (1970). ArticleCAS Google Scholar