Involvement of a chromatin remodeling complex in damage tolerance during DNA replication (original) (raw)
References
Falbo, K.B. & Shen, X. Chromatin remodeling in DNA replication. J. Cell. Biochem.97, 684–689 (2006). ArticleCAS Google Scholar
Vincent, J.A., Kwong, T.J. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat. Struct. Mol. Biol.15, 477–484 (2008). ArticleCAS Google Scholar
Papamichos-Chronakis, M. & Peterson, C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol.15, 338–345 (2008). ArticleCAS Google Scholar
Shimada, K. et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol.18, 566–575 (2008). ArticleCAS Google Scholar
Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature406, 541–544 (2000). ArticleCAS Google Scholar
Morrison, A.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell119, 767–775 (2004). ArticleCAS Google Scholar
Morrison, A.J. et al. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell130, 499–511 (2007). ArticleCAS Google Scholar
van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S.M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell119, 777–788 (2004). ArticleCAS Google Scholar
Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature424, 1078–1083 (2003). ArticleCAS Google Scholar
Michalet, X. et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science277, 1518–1523 (1997). ArticleCAS Google Scholar
Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell12, 147–155 (2003). ArticleCAS Google Scholar
Tourrière, H., Versini, G., Cordon-Preciado, V., Alabert, C. & Pasero, P. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell19, 699–706 (2005). Article Google Scholar
Branzei, D. & Foiani, M. The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp. Cell Res.312, 2654–2659 (2006). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst.)6, 994–1003 (2007). ArticleCAS Google Scholar
Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol.9, 297–308 (2008). ArticleCAS Google Scholar
Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature412, 557–561 (2001). ArticleCAS Google Scholar
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem.273, 5858–5868 (1998). ArticleCAS Google Scholar
Luke, B. et al. The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites. Curr. Biol.16, 786–792 (2006). ArticleCAS Google Scholar
Branzei, D. et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell127, 509–522 (2006). ArticleCAS Google Scholar
Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCAS Google Scholar
Ulrich, H.D. Conservation of DNA damage tolerance pathways from yeast to humans. Biochem. Soc. Trans.35, 1334–1337 (2007). ArticleCAS Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005). ArticleCAS Google Scholar
Watts, F.Z. Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA Repair (Amst.)5, 399–403 (2006). ArticleCAS Google Scholar
Chang, M., Bellaoui, M., Boone, C. & Brown, G.W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl. Acad. Sci. USA99, 16934–16939 (2002). ArticleCAS Google Scholar
Veis, J., Klug, H., Koranda, M. & Ammerer, G. Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals. Mol. Cell. Biol.27, 8364–8373 (2007). ArticleCAS Google Scholar
Stelter, P. & Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003). ArticleCAS Google Scholar
Kao, C.F. & Osley, M.A. In vivo assays to study histone ubiquitylation. Methods31, 59–66 (2003). ArticleCAS Google Scholar
Han, J., Zhou, H., Li, Z., Xu, R.M. & Zhang, Z. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J. Biol. Chem.282, 28587–28596 (2007). ArticleCAS Google Scholar
Gangavarapu, V., Prakash, S. & Prakash, L. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol.27, 7758–7764 (2007). ArticleCAS Google Scholar
Duro, E., Vaisica, J.A., Brown, G.W. & Rouse, J. Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair (Amst.)7, 811–818 (2008). ArticleCAS Google Scholar
Li, X. & Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res.18, 99–113 (2008). ArticleCAS Google Scholar
Branzei, D., Vanoli, F. & Foiani, M. SUMOylation regulates Rad18-mediated template switch. Nature456, 915–920 (2008). ArticleCAS Google Scholar
Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature438, 379–383 (2005). ArticleCAS Google Scholar
Fasullo, M., Giallanza, P., Dong, Z., Cera, C. & Bennett, T. Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics158, 959–972 (2001). CASPubMedPubMed Central Google Scholar
Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev.16, 2479–2484 (2002). ArticleCAS Google Scholar
Cobb, J.A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S.M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J.22, 4325–4336 (2003). ArticleCAS Google Scholar