- Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2005).
Article Google Scholar
- Latham, J.A. & Dent, S.Y.R. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 1017–1024 (2007).
Article CAS Google Scholar
- Millar, C.B. & Grunstein, M. Genome-wide patterns of histone modifications in yeast. Nat. Rev. Mol. Cell Biol. 7, 657–666 (2006).
Article CAS Google Scholar
- Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).
Article CAS Google Scholar
- Rangasamy, D., Greaves, I. & Tremethick, D.J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Biol. 11, 650–655 (2004).
Article CAS Google Scholar
- Leach, T.J. et al. Histone H2A.Z is widely but non-randomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272 (2000).
Article CAS Google Scholar
- Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D.J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003).
Article CAS Google Scholar
- Greaves, I.K., Rangasamy, D., Devoy, M., Marshall Graves, J.A. & Tremethick, D.J. The X and Y chromosomes assemble into H2A.Z, containing facultative heterochromatin, following meiosis. Mol. Cell. Biol. 26, 5394–5405 (2006).
Article CAS Google Scholar
- Keogh, M.-C. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20, 660–665 (2006).
Article CAS Google Scholar
- Millar, C.B., Xu, F., Zhang, K. & Grunstein, M. Acetylation of H2AZ lysine 14 is associated with genome-wide gene activity in yeast. Genes Dev. 20, 711–722 (2006).
Article CAS Google Scholar
- Babiarz, J.E., Halley, J.E. & Rine, J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev. 20, 700–710 (2006).
Article CAS Google Scholar
- Ren, Q. & Gorovsky, M.A. Histone H2A.Z acetylation modulates an essential charge patch. Mol. Cell 7, 1329–1335 (2001).
Article CAS Google Scholar
- Bruce, K. et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 33, 5633–5639 (2005).
Article CAS Google Scholar
- Bonenfant, D., Coulot, M., Towbin, H., Schindler, P. & van Oostrum, J. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 5, 541–552 (2006).
Article CAS Google Scholar
- Krogan, N.J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex and the histone acetyltransferase NuA4. Proc. Natl. Acad. Sci. USA 101, 13513–13518 (2004).
Article CAS Google Scholar
- Gómez, E.B., Nugent, R.L., Laria, S. & Forsburg, S.L. S. pombe histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics 179, 757–771 (2008).
Article Google Scholar
- Krogan, N.J. et al. A Snf2-Family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003).
Article CAS Google Scholar
- Kobor, M.S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, e131 (2004).
Article Google Scholar
- Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).
Article CAS Google Scholar
- Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map (E-MAP) in fission yeast. Science 322, 405–410 (2008).
Article CAS Google Scholar
- Roguev, A., Wiren, M., Weissman, J.S. & Krogan, N.J. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat. Methods 4, 861–866 (2007).
Article CAS Google Scholar
- Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).
Article CAS Google Scholar
- Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).
Article CAS Google Scholar
- Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).
Article Google Scholar
- Carr, A.M. et al. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol. Gen. Genet. 245, 628–635 (1994).
Article CAS Google Scholar
- Ahmed, S., Dul, B., Qiu, X. & Walworth, N.C. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe. Genetics 177, 1487–1497 (2008).
Article Google Scholar
- Ekwall, K. Epigenetic control of centromere behaviour. Annu. Rev. Genet. 41, 63–81 (2007).
Article CAS Google Scholar
- Gregan, J. et al. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr. Biol. 17, 1190–1200 (2007).
Article CAS Google Scholar
- Cooper, J.P., Nimmo, E.R., Allshire, R.C. & Cech, T.R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).
Article CAS Google Scholar
- Ding, D.-Q., Yamamoto, A., Haraguchi, T. & Hiraoka, Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341 (2004).
Article CAS Google Scholar
- Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K.G. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18, 1657–1669 (2007).
Article CAS Google Scholar
- Kawashima, S.A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007).
Article CAS Google Scholar
- Nakazawa, N. et al. Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J. Cell Biol. 180, 1115–1131 (2008).
Article CAS Google Scholar
- Saka, Y. et al. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J. 13, 4938–4952 (1994).
Article CAS Google Scholar
- Sutani, T. et al. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13, 2271–2283 (1999).
Article CAS Google Scholar
- Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R. & Meyer, B.J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).
Article CAS Google Scholar
- Hiraoka, Y., Toda, T. & Yanagida, M. The NDA3 gene of fission yeast encodes β-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358 (1984).
Article CAS Google Scholar
- Chen, E.S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).
Article CAS Google Scholar
- Sipiczki, M. Where does fission yeast sit on the tree of life? Genome Biol. 1, 1011 (2000).
Article Google Scholar
- O'Brien, S.J. et al. The promise of comparative genomics in mammals. Science 286, 458–462 (1999).
Article CAS Google Scholar
- Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc. Natl. Acad. Sci. USA 94, 4811–4815 (1997).
Article CAS Google Scholar
- Shevchenko, A. et al. Chromatin central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol. 9, R167 (2008).
Article Google Scholar
- Ahmed, S., Palermo, C., Wan, S. & Walworth, N.C. A novel protein with similarities to Rb binding protein 2 compensates for loss of chk1 function and affects histone modification in fission yeast. Mol. Cell. Biol. 24, 3660–3669 (2004).
Article CAS Google Scholar
- Choi, K. et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134, 1931–1941 (2007).
Article CAS Google Scholar
- Ruhl, D.D. et al. Purification of a human SCRAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45, 5671–5677 (2006).
Article CAS Google Scholar
- Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).
Article CAS Google Scholar
- Updike, D.L. & Mango, S.E. Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet. 2, e161 (2006).
Article Google Scholar
- Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142 (2006).
Article CAS Google Scholar
- Fiedler, D. et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952–963 (2009).
Article CAS Google Scholar
- Nabetani, A., Koujin, T., Tsutsumi, C., Haraguchi, T. & Hiraoka, Y. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110, 322–334 (2001).
Article CAS Google Scholar
- Gulli, M.P. et al. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation. Nucleic Acids Res. 23, 1912–1918 (1995).
Article CAS Google Scholar
- Hagstrom, K.A. & Meyer, B.J. Condensin and cohesin: more than chromosome compactor and glue. Nat. Rev. Genet. 4, 520–534 (2003).
Article CAS Google Scholar
- Hirano, T. Condensins: Organizing and segregating the genome. Curr. Biol. 15, R265–R275 (2005).
Article CAS Google Scholar
- Dunaway, S. & Walworth, N.C. Assaying the DNA damage checkpoint in fission yeast. Methods 33, 260–263 (2004).
Article CAS Google Scholar
- Lyne, R. et al. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4, 27 (2003).
Article Google Scholar
- Niwa, O., Matsumoto, T. & Yanagida, M. Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol. Genet. Genomics 203, 397–405 (1986).
Article CAS Google Scholar
- Krogan, N.J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979–6992 (2002).
Article CAS Google Scholar