Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1 (original) (raw)
Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol.5, 670–677 (2004). ArticleCAS Google Scholar
Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity15, 467–476 (2001). ArticleCAS Google Scholar
Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat. Immunol.2, 644–651 (2001). ArticleCAS Google Scholar
Saric, T. et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol.3, 1169–1176 (2002). ArticleCAS Google Scholar
Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature419, 480–483 (2002). ArticleCAS Google Scholar
York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol.3, 1177–1184 (2002). ArticleCAS Google Scholar
Blanchard, N. et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol.184, 3033–3042 (2010). ArticleCAS Google Scholar
York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA103, 9202–9207 (2006). ArticleCAS Google Scholar
Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med.203, 647–659 (2006). ArticleCAS Google Scholar
Firat, E. et al. The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. J. Immunol.178, 2241–2248 (2007). ArticleCAS Google Scholar
Blanchard, N. et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat. Immunol.9, 937–944 (2008). ArticleCAS Google Scholar
Brown, M.A. Genetics of ankylosing spondylitis. Curr. Opin. Rheumatol.22, 126–132 (2010). ArticleCAS Google Scholar
Fung, E.Y. et al. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun.10, 188–191 (2009). ArticleCAS Google Scholar
Mehta, A.M. et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosom. Cancer48, 410–418 (2009). ArticleCAS Google Scholar
Yamamoto, N. et al. Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. Hum. Mutat.19, 251–257 (2002). ArticleCAS Google Scholar
Chang, S.C., Momburg, F., Bhutani, N. & Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a 'molecular ruler' mechanism. Proc. Natl. Acad. Sci. USA102, 17107–17112 (2005). ArticleCAS Google Scholar
Kisselev, A.F., Akopian, T.N., Woo, K.M. & Goldberg, A.L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem.274, 3363–3371 (1999). ArticleCAS Google Scholar
Momburg, F., Roelse, J., Hammerling, G.J. & Neefjes, J.J. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med.179, 1613–1623 (1994). ArticleCAS Google Scholar
Schumacher, T.N. et al. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J. Exp. Med.179, 533–540 (1994). ArticleCAS Google Scholar
van Endert, P.M. et al. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity1, 491–500 (1994). ArticleCAS Google Scholar
Kanaseki, T., Blanchard, N., Hammer, G.E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity25, 795–806 (2006). ArticleCAS Google Scholar
Falk, K., Rotzschke, O. & Rammensee, H.G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature348, 248–251 (1990). ArticleCAS Google Scholar
Infantes, S. et al. H-2Ld class I molecule protects an HIV N-extended epitope from in vitro trimming by endoplasmic reticulum aminopeptidase associated with antigen processing. J. Immunol.184, 3351–3355 (2010). ArticleCAS Google Scholar
Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem.125, 931–938 (1999). ArticleCAS Google Scholar
Evnouchidou, I. et al. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS ONE3, e3658 (2008). Article Google Scholar
Hearn, A., York, I.A. & Rock, K.L. The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J. Immunol.183, 5526–5536 (2009). ArticleCAS Google Scholar
Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol.6, 689–697 (2005). ArticleCAS Google Scholar
Rawlings, N.D., Barrett, A.J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res.38, D227–D233 (2010). ArticleCAS Google Scholar
Andrade, M.A., Petosa, C., O'Donoghue, S.I., Muller, C.W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol.309, 1–18 (2001). ArticleCAS Google Scholar
Suhre, K. & Sanejouand, Y.H. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res.32, W610–W614 (2004). ArticleCAS Google Scholar
Thompson, M.W., Archer, E.D., Romer, C.E. & Seipelt, R.L. A conserved tyrosine residue of Saccharomyces cerevisiae leukotriene A4 hydrolase stabilizes the transition state of the peptidase activity. Peptides27, 1701–1709 (2006). ArticleCAS Google Scholar
Addlagatta, A., Gay, L. & Matthews, B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc. Natl. Acad. Sci. USA103, 13339–13344 (2006). ArticleCAS Google Scholar
Thunnissen, M.M., Nordlund, P. & Haeggstrom, J.Z. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol.8, 131–135 (2001). ArticleCAS Google Scholar
Ito, K. et al. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis. J. Mol. Biol.362, 228–240 (2006). ArticleCAS Google Scholar
Tholander, F. et al. Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem. Biol.15, 920–929 (2008). ArticleCAS Google Scholar
Fournié-Zaluski, M.C. et al. Structure of aminopeptidase N from Escherichia coli complexed with the transition-state analogue aminophosphinic inhibitor PL250. Acta Crystallogr. D Biol. Crystallogr.65, 814–822 (2009). Article Google Scholar
Tsujimoto, M. & Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta1751, 9–18 (2005). ArticleCAS Google Scholar
Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem.278, 32275–32283 (2003). ArticleCAS Google Scholar
Goto, Y., Tanji, H., Hattori, A. & Tsujimoto, M. Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1. Biochem. J.416, 109–116 (2008). ArticleCAS Google Scholar
Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science324, 1087–1091 (2009). ArticleCAS Google Scholar
Kochan, G. et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 ERAP1 reveal the molecular basis of N-terminal peptide trimming. Proc. Natl. Acad. Sci. USA (in the press).
Evnouchidou, I., Berardi, M.J. & Stratikos, E. A continuous fluorigenic assay for the measurement of the activity of endoplasmic reticulum aminopeptidase 1: competition kinetics as a tool for enzyme specificity investigation. Anal. Biochem.395, 33–40 (2009). ArticleCAS Google Scholar
Segel, I. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems 984 (Wiley, New York, 1993).
Moussaoui, M., Guasch, A., Boix, E., Cuchillo, C. & Nogues, M. The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A. J. Biol. Chem.271, 4687–4692 (1996). ArticleCAS Google Scholar
Birrell, G.B., Zaikova, T.O., Rukavishnikov, A.V., Keana, J.F. & Griffith, O.H. Allosteric interactions within subsites of a monomeric enzyme: kinetics of fluorogenic substrates of PI-specific phospholipase C. Biophys. J.84, 3264–3275 (2003). ArticleCAS Google Scholar
Kyrieleis, O.J., Goettig, P., Kiefersauer, R., Huber, R. & Brandstetter, H. Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations. J. Mol. Biol.349, 787–800 (2005). ArticleCAS Google Scholar
Towler, P. et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem.279, 17996–18007 (2004). ArticleCAS Google Scholar
Comellas-Bigler, M., Lang, R., Bode, W. & Maskos, K. Crystal structure of the E. coli dipeptidyl carboxypeptidase Dcp: further indication of a ligand-dependent hinge movement mechanism. J. Mol. Biol.349, 99–112 (2005). ArticleCAS Google Scholar
Holland, D.R. et al. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry31, 11310–11316 (1992). ArticleCAS Google Scholar
Grams, F. et al. Structure of astacin with a transition-state analogue inhibitor. Nat. Struct. Biol.3, 671–675 (1996). ArticleCAS Google Scholar
Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature432, 872–877 (2004). ArticleCAS Google Scholar
Shen, Y., Joachimiak, A., Rosner, M.R. & Tang, W.J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature443, 870–874 (2006). ArticleCAS Google Scholar
Malito, E. et al. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry47, 12822–12834 (2008). ArticleCAS Google Scholar
Georgiadou, D. et al. Placental leucine aminopeptidase efficiently generates mature antigenic peptides in vitro but in patterns distinct from endoplasmic reticulum aminopeptidase 1. J. Immunol.185, 1584–1592 (2010). ArticleCAS Google Scholar
Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet.39, 1329–1337 (2007). ArticleCAS Google Scholar
Harvey, D. et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum. Mol. Genet.18, 4204–4212 (2009). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr.56, 965–972 (2000). ArticleCAS Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCAS Google Scholar