An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains (original) (raw)
Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans.37, 937–953 (2009). ArticleCASPubMed Google Scholar
Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep.9, 536–542 (2008). ArticleCASPubMedPubMed Central Google Scholar
Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137, 133–145 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dammer, E.B. et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J. Biol. Chem.286, 10457–10465 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, M., Cheng, D., Peng, J. & Pickart, C.M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J.25, 1710–1719 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hay-Koren, A., Caspi, M., Zilberberg, A. & Rosin-Arbesfeld, R. The EDD E3 ubiquitin ligase ubiquitinates and up-regulates β-catenin. Mol. Biol. Cell22, 399–411 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chastagner, P., Israël, A. & Brou, C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep.7, 1147–1153 (2006). ArticleCASPubMedPubMed Central Google Scholar
Al-Hakim, A.K. et al. Control of AMPK-related kinases by USP9X and atypical lysine(29)/lysine(33)-linked polyubiquitin chains. Biochem. J.411, 249–260 (2008). ArticleCASPubMed Google Scholar
Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem.270, 17442–17456 (1995). ArticleCASPubMed Google Scholar
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell96, 635–644 (1999). ArticleCASPubMed Google Scholar
Virdee, S., Ye, Y., Nguyen, D.P., Komander, D. & Chin, J.W. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol.6, 750–757 (2010). ArticleCASPubMed Google Scholar
El Oualid, F. et al. Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew. Chem. Int. Edn Engl.49, 10149–10153 (2010). ArticleCAS Google Scholar
Kumar, K.S., Spasser, L., Erlich, L.A., Bavikar, S.N. & Brik, A. Total chemical synthesis of di-ubiquitin chains. Angew. Chem. Int. Edn Engl.49, 9126–9131 (2010). ArticleCAS Google Scholar
Komander, D., Clague, M.J. & Urbé, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol.10, 550–563 (2009). ArticleCASPubMed Google Scholar
Nijman, S.M.B. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell123, 773–786 (2005). ArticleCASPubMed Google Scholar
Komander, D. et al. Molecular discrimination of structurally equivalent lysine 63-linked and linear polyubiquitin chains. EMBO Rep.10, 466–473 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J.28, 621–631 (2009). ArticleCASPubMedPubMed Central Google Scholar
Edelmann, M.J. et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J.418, 379–390 (2009). ArticleCASPubMed Google Scholar
Bremm, A., Freund, S.M. & Komander, D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol.17, 939–947 (2010). ArticleCASPubMedPubMed Central Google Scholar
Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J.409, 77–85 (2008). ArticleCASPubMed Google Scholar
Lin, S.C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol.376, 526–540 (2008). ArticleCASPubMed Google Scholar
Messick, T.E. et al. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J. Biol. Chem.283, 11038–11049 (2008). ArticleCASPubMedPubMed Central Google Scholar
Akutsu, M., Ye, Y., Virdee, S., Chin, J.W. & Komander, D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. USA108, 2228–2233 (2011). ArticleCASPubMedPubMed Central Google Scholar
Capodagli, G.C. et al. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J. Virol.85, 3621–3630 (2011). ArticleCASPubMedPubMed Central Google Scholar
James, T.W. et al. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc. Natl. Acad. Sci. USA108, 2222–2227 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol.10, 659–671 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hymowitz, S.G. & Wertz, I.E. A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer10, 332–341 (2010). ArticleCASPubMed Google Scholar
Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science318, 1628–1632 (2007). ArticleCASPubMed Google Scholar
Li, S. et al. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J. Biol. Chem.285, 4291–4297 (2010). ArticleCASPubMed Google Scholar
Uchiyama, K. et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J. Cell Biol.159, 855–866 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ernst, R., Mueller, B., Ploegh, H.L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell36, 28–38 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tran, H., Hamada, F., Schwarz-Romond, T. & Bienz, M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev.22, 528–542 (2008). ArticleCASPubMedPubMed Central Google Scholar
Li, J., Mahajan, A. & Tsai, M.D. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry45, 15168–15178 (2006). ArticleCASPubMed Google Scholar
Sato, Y. et al. Structural basis for specific cleavage of lysine 63-linked polyubiquitin chains. Nature455, 358–362 (2008). ArticleCASPubMed Google Scholar
de Vries, S.J., van Dijk, M. & Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc.5, 883–897 (2010). ArticleCASPubMed Google Scholar
Mosavi, L.K., Cammett, T.J., Desrosiers, D.C. & Peng, Z.Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci.13, 1435–1448 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sato, Y., Yoshikawa, A., Yamashita, M., Yamagata, A. & Fukai, S. Structural basis for specific recognition of lysine 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J.28, 3903–3909 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol.16, 1328–1330 (2009). ArticleCASPubMed Google Scholar
Bosanac, I. et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell40, 548–557 (2010). ArticleCASPubMed Google Scholar
Reyes-Turcu, F.E., Shanks, J.R., Komander, D. & Wilkinson, K.D. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem.283, 19581–19592 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ohshima, R. et al. Putative tumor suppressor EDD interacts with and up-regulates APC. Genes Cells12, 1339–1345 (2007). ArticleCASPubMed Google Scholar
Tanaka, N. et al. Structural basis for recognition of 2′,5′-linked oligoadenylates by human ribonuclease L. EMBO J.23, 3929–3938 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pape, T. & Schneider, T.R. HKL2map: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr.37, 843–844 (2004). ArticleCAS Google Scholar
Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr.59, 2023–2030 (2003). ArticleCASPubMed Google Scholar
Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol.6, 458–463 (1999). ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.58, 1948–1954 (2002). ArticlePubMed Google Scholar