Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep.9, 536–542 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hofmann, K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst.)8, 544–556 (2009). ArticleCAS Google Scholar
Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J.28, 2461–2468 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sims, J.J. & Cohen, R.E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell33, 775–783 (2009). ArticleCASPubMedPubMed Central Google Scholar
Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.)9, 1229–1240 (2010). ArticleCAS Google Scholar
Lehmann, A.R. Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett.585, 2772–2779 (2011). ArticleCASPubMed Google Scholar
Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCASPubMed Google Scholar
Parker, J.L. & Ulrich, H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J.28, 3657–3666 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500 (2004). ArticleCASPubMed Google Scholar
Haracska, L. et al. Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc. Natl. Acad. Sci. USA98, 14256–14261 (2001). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, K. et al. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J.23, 3886–3896 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science310, 1821–1824 (2005). ArticleCASPubMed Google Scholar
Plosky, B.S. et al. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J.25, 2847–2855 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. USA104, 15591–15598 (2007). ArticleCASPubMedPubMed Central Google Scholar
MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell142, 65–76 (2010). ArticleCASPubMedPubMed Central Google Scholar
Matic, I. et al. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell39, 641–652 (2010). ArticleCASPubMed Google Scholar
Liu, Q. et al. Novel human BTB/POZ domain-containing zinc finger protein ZBTB1 inhibits transcriptional activities of CRE. Mol. Cell. Biochem.357, 405–414 (2011). ArticleCASPubMed Google Scholar
Centore, R.C., Yazinski, S.A., Tse, A. & Zou, L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol. Cell46, 625–635 (2012). ArticleCASPubMedPubMed Central Google Scholar
Machida, Y., Kim, M.S. & Machida, Y.J. Spartan/C1orf124 is important to prevent UV-induced mutagenesis. Cell Cycle11, 3395–3402 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ghosal, G., Leung, J.W., Nair, B.C., Fong, K.W. & Chen, J. PCNA-binding protein C1orf124 is a regulator of translesion synthesis. J. Biol. Chem. advance online publication 17 August 2012 (doi:10.1074/jbc.M112.400135). ArticleCASPubMedPubMed Central Google Scholar
Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood100, 2414–2420 (2002). ArticleCASPubMed Google Scholar
Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to unterstrand crosslinking agents. Cell142, 77–88 (2010). ArticleCASPubMed Google Scholar
Shiomi, N. et al. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res.35, e9 (2007). ArticlePubMed Google Scholar
Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol.13, 1376–1382 (2011). ArticleCASPubMed Google Scholar
Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat. Struct. Mol. Biol.18, 1345–1350 (2011). ArticleCASPubMed Google Scholar
Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol.14, 117–123 (2012). ArticleCASPubMed Google Scholar
Parris, C.N. & Seidman, M.M. A signature element distinguishes sibling and independent mutations in a shuttle vector plasmid. Gene117, 1–5 (1992). ArticleCASPubMed Google Scholar
Yeung, H.O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans.36, 62–67 (2008). ArticleCASPubMed Google Scholar
Bienko, M. et al. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell37, 396–407 (2010). ArticleCASPubMed Google Scholar
Maher, V.M., Ouellette, L.M., Curren, R.D. & McCormick, J.J. Frequency of ultraviolet light–induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature261, 593–595 (1976). ArticleCASPubMed Google Scholar
Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat. Struct. Mol. Biol. advance online publication 7 October 2012 (doi:10.1038/nsmb.2395). ArticleCAS Google Scholar