Importin-α-16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope (original) (raw)
References
Hetzer, M., Walther, T.C. & Mattaj, I.W. Pushing the envelope: structure, function and dynamics of the nuclear periphery. Annu. Rev. Cell Dev. Biol.21, 347–380 (2005). ArticleCASPubMed Google Scholar
Saksena, S., Shao, Y., Braunagel, S.C., Summers, M.D. & Johnson, A.E. Cotranslational integration and initial sorting at the endoplasmic reticulum translocon of protein destined for the inner nuclear membrane. Proc. Natl Acad. Sci. USA101, 12537–12542 (2004). ArticleCASPubMedPubMed Central Google Scholar
Braunagel, S.C. et al. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins: facilitated trafficking to the inner nuclear membrane. Proc. Natl Acad. Sci. USA101, 8372–8377 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ohba, T., Schirmer, E.C., Nishimoto, T. & Gerace, L. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol.167, 1051–1062 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hong, T., Summers, M.D. & Braunagel, S.C. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of the occlusion-derived virus. Proc. Natl Acad. Sci. USA94, 4050–4055 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rosas-Acosta, G., Braunagel, S.C. & Summers, M.D. Effects of deletion and overexpression of the Autographa californica nuclear polyhedrosis virus FP25K gene on synthesis of two occlusion-derived virus envelope proteins and their transport into virus-induced intranuclear membranes. J. Virol.75, 10829–10842 (2001). ArticleCASPubMedPubMed Central Google Scholar
Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell78, 461–471 (1994). ArticleCASPubMed Google Scholar
Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell73, 1101–1115 (1993). ArticleCASPubMed Google Scholar
Lee, J.M. et al. Molecular cloning and characterization of the translationally controlled tumor protein gene in Bombyx mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol.139, 35–43 (2004). ArticlePubMed Google Scholar
Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997). ArticleCASPubMedPubMed Central Google Scholar
Miyamoto, Y. et al. Importin α can migrate into the nucleus in an importin β- and Ran-independent manner. EMBO J.21, 5833–5842 (2002). ArticleCASPubMedPubMed Central Google Scholar
McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell12, 329–341 (2003). ArticleCASPubMed Google Scholar
Jakel, S., Mingot, J.-M., Schwarzmaier, P., Hartmann, E. & Görlich, D. Importins fulfill a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J.21, 377–386 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol.11, 703–715 (2001). ArticleCASPubMed Google Scholar
Harel, A. & Forbes, D.J. Importin beta: conducting a much larger cellular symphony. Mol. Cell16, 319–330 (2004). CASPubMed Google Scholar
Kamata, M., Nitahara-Kasahara, Y., Miyamoto, Y., Yoneda, Y. & Aida, Y. Importin-α promotes passage through the nuclear pore complex of human immunodeficiency virus Type 1 Vpr. J. Virol.79, 3557–3564 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pemberton, L.F., Rosenblum, J.S. & Blobel, G. Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J. Cell Biol.145, 1407–1417 (1999). ArticleCASPubMedPubMed Central Google Scholar
Belanger, K.D., Kenna, M.A., Wei, S. & Davis, L.I. Genetic and physical interactions between Srp1p and nuclear pore complex proteins Nup1p and Nup2p. J. Cell Biol.126, 619–630 (1994). ArticleCASPubMed Google Scholar
Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin α. Mol. Cell. Biol.20, 8468–8479 (2000). ArticleCASPubMedPubMed Central Google Scholar
Moroianu, J., Blobel, G. & Radu, A. RanGTP-mediated nuclear export of karyopherin α involves its interaction with the nucleoporin Nup153. Proc. Natl Acad. Sci. USA94, 9699–9704 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lindsay, M.E., Plafker, K., Smith, A.E., Clurman, B.E. & Macara, I.G. Npap60/Nup50 is a tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell110, 349–360 (2002). ArticleCASPubMed Google Scholar
Moore, M.S. Npap60: a new player in nuclear protein import. Trends Cell Biol.13, 61–64 (2003). ArticleCASPubMed Google Scholar
Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear import complex disassembly and importin recycling. EMBO J.24, 3681–3689 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hanz, S. & Fainzilber, M. Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics. Neuroscientist10, 404–408 (2004). ArticleCASPubMed Google Scholar
Hanz, S. et al. Axoplasmic importins enable retrograde inujry signaling in lesioned nerve. Neuron40, 1095–1104 (2003). ArticleCASPubMed Google Scholar
Hachet, V., Köcher, T., Wilm, T. & Mattaj, I.W. Importin α associates with membranes and participates in nuclear envelope assembly in vitro. EMBO J.23, 1526–1535 (2004). ArticleCASPubMedPubMed Central Google Scholar
Marzalek, J.R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian receptors. Cell102, 175–187 (2000). Article Google Scholar
Williams, D.S. Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vision Res.42, 455–462 (2002). ArticleCASPubMed Google Scholar
Gruss, O.J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell104, 83–93 (2001). ArticleCASPubMed Google Scholar
Beniya, H., Braunagel, S.C. & Summers, M.D. Autographa californica nuclear polyhedrosis virus: subcellular localization and protein trafficking of BV/ODV-E26 to intranuclear membranes and viral envelopes. Virology240, 64–75 (1998). ArticleCASPubMed Google Scholar
Worman, H.J. & Courvalin, J.-C. Nuclear envelope, nuclear lamina, and inherited disease. Int. Rev. Cytol.246, 231–279 (2005). ArticleCASPubMed Google Scholar
Braunagel, S.C., Elton, D.M., Ma, H. & Summers, M.D. Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope, ODV-E56. Virology217, 97–110 (1996). ArticleCASPubMed Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989).