The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases (original) (raw)

References

  1. Cordin, O., Banroques, J., Tanner, N.K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).
    Article CAS Google Scholar
  2. Eoff, R.L. & Raney, K.D. Helicase-catalysed translocation and strand separation. Biochem. Soc. Trans. 33, 1474–1478 (2005).
    Article CAS Google Scholar
  3. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).
    Article CAS Google Scholar
  4. Tanner, N.K. & Linder, P. DExD/H box RNA helicases. From generic motors to specific dissociation functions. Mol. Cell 8, 251–261 (2001).
    Article CAS Google Scholar
  5. Bowers, H.A. et al. Discriminatory RNP remodeling by the DEAD-box protein DED1. RNA 12, 903–912 (2006).
    Article CAS Google Scholar
  6. Fairman, M.E. et al. Protein displacement by DExH/D RNA helicases without duplex unwinding. Science 304, 730–734 (2004).
    Article CAS Google Scholar
  7. Linder, P. The life of RNA with proteins. Science 304, 694–695 (2004).
    Article CAS Google Scholar
  8. Will, C.L. & Luehrmann, R. RNP remodeling with DExH/D boxes. Science 291, 1916–1917 (2001).
    Article CAS Google Scholar
  9. Byrd, A.K. & Raney, K.D. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat. Struct. Mol. Biol. 11, 531–538 (2004).
    Article CAS Google Scholar
  10. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006).
    Article CAS Google Scholar
  11. Jankowsky, E., Gross, C.H., Shuman, S. & Pyle, A.M. The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403, 447–451 (2000).
    Article CAS Google Scholar
  12. Myong, S., Rasnik, I., Joo, C., Lohman, T.M. & Ha, T. Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005).
    Article CAS Google Scholar
  13. Kawaoka, J., Jankowsky, E. & Pyle, A.M. Backbone tracking by the SF2 helicase NPH-II. Nat. Struct. Mol. Biol. 11, 526–530 (2004).
    Article CAS Google Scholar
  14. von Hippel, P.H. Helicases become mechanistically simpler and functionally more complex. Nat. Struct. Mol. Biol. 11, 494–496 (2004).
    Article CAS Google Scholar
  15. Lohman, T.M. & Bjornson, K.P. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214 (1996).
    Article CAS Google Scholar
  16. Jankowsky, E., Fairman, M.E. & Yang, Q. RNA helicases: versatile ATP-driven nanomotors. J. Nanosci. Nanotechnol. 5, 1983–1989 (2005).
    Article CAS Google Scholar
  17. Rogers, G.W.J., Lima, W.F. & Merrick, W.C. Further characterization of the helicase activity of eIF4A. Substrate specificity. J. Biol. Chem. 276, 12598–12608 (2001).
    Article CAS Google Scholar
  18. Huang, Y. & Liu, Z.R. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J. Biol. Chem. 277, 12810–12815 (2002).
    Article CAS Google Scholar
  19. Bizebard, T., Ferlenghi, I., Iost, I. & Dreyfus, M. Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry 43, 7857–7866 (2004).
    Article CAS Google Scholar
  20. Linder, P. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol. Cell 95, 157–167 (2003).
    Article CAS Google Scholar
  21. Chuang, R.Y., Weaver, P.L., Liu, Z. & Chang, T.H. Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275, 1468–1471 (1997).
    Article CAS Google Scholar
  22. Iost, I., Dreyfus, M. & Linder, P. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683 (1999).
    Article CAS Google Scholar
  23. Yang, Q. & Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005).
    Article CAS Google Scholar
  24. Singleton, M.R., Dillingham, M.S., Gaudier, M., Kowalczykowski, S.C. & Wigley, D.B. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432, 187–193 (2004).
    Article CAS Google Scholar
  25. Dillingham, M.S., Spies, M. & Kowalczykowski, S.C. RecBCD enzyme is a bipolar DNA helicase. Nature 423, 893–897 (2003).
    Article CAS Google Scholar
  26. Cordin, O., Tanner, N.K., Doere, M., Linder, P. & Banroques, J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J. 23, 2478–2487 (2004).
    Article CAS Google Scholar
  27. Tanaka, N. & Schwer, B. Characterization of the NTPase, RNA-binding, and RNA helicase activities of the DEAH-box splicing factor Prp22. Biochemistry 44, 9795–9803 (2005).
    Article CAS Google Scholar
  28. Tanaka, N. & Schwer, B. Mutations in PRP43 that uncouple RNA-dependent NTPase activity and pre-mRNA splicing function. Biochemistry 45, 6510–6521 (2006).
    Article CAS Google Scholar
  29. Kawaoka, J. & Pyle, A.M. Choosing between DNA and RNA: the polymer specificity of RNA helicase NPH-II. Nucleic Acids Res. 33, 644–649 (2005).
    Article CAS Google Scholar
  30. Shuman, S. Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc. Natl. Acad. Sci. USA 89, 10935–10939 (1992).
    Article CAS Google Scholar
  31. Shuman, S. Vaccinia virus RNA helicase. Directionality and substrate specificity. J. Biol. Chem. 268, 11798–11802 (1993).
    CAS PubMed Google Scholar
  32. Beran, R.K., Bruno, M.M., Bowers, H.A., Jankowsky, E. & Pyle, A.M. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track. J. Mol. Biol. 358, 974–982 (2006).
    Article CAS Google Scholar
  33. Bianco, P.R. & Kowalczykowski, S.C. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000).
    Article CAS Google Scholar
  34. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).
    Article CAS Google Scholar
  35. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300 (2006).
    Article CAS Google Scholar
  36. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).
    Article CAS Google Scholar
  37. Serebrov, V. & Pyle, A.M. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 430, 476–480 (2004).
    Article CAS Google Scholar

Download references