Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions (original) (raw)

References

  1. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).
    Article CAS Google Scholar
  2. d'Adda di Fagagna, F., Teo, S.H. & Jackson, S.P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799 (2004).
    Article Google Scholar
  3. Viscardi, V., Clerici, M., Cartagena-Lirola, H. & Longhese, M.P. Telomeres and DNA damage checkpoints. Biochimie 87, 613–624 (2005).
    Article CAS Google Scholar
  4. Riha, K., Heacock, M.L. & Shippen, D.E. The role of the nonhomologous end-Joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet. 40, 237–277 (2006).
    Article CAS Google Scholar
  5. Miyoshi, T., Sadaie, M., Kanoh, J. & Ishikawa, F. Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J. Biol. Chem. 278, 1924–1931 (2003).
    Article CAS Google Scholar
  6. Riha, K., Watson, J.M., Parkey, J. & Shippen, D.E. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 21, 2819–2826 (2002).
    Article CAS Google Scholar
  7. Hsu, H.L., Gilley, D., Blackburn, E.H. & Chen, D.J. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA 96, 12454–12458 (1999).
    Article CAS Google Scholar
  8. Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–745 (1998).
    Article CAS Google Scholar
  9. Celli, G.B., Denchi, E.L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).
    Article Google Scholar
  10. Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21, 2207–2219 (2002).
    Article CAS Google Scholar
  11. Ferreira, M.G. & Cooper, J.P. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell 7, 55–63 (2001).
    Article CAS Google Scholar
  12. Fisher, T.S., Taggart, A.K. & Zakian, V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11, 1198–1205 (2004).
    Article CAS Google Scholar
  13. Porter, S.E., Greenwell, P.W., Ritchie, K.B. & Petes, T.D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582–585 (1996).
    Article CAS Google Scholar
  14. Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. & Gottschling, D.E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003).
    Article CAS Google Scholar
  15. Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).
    Article CAS Google Scholar
  16. Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).
    Article CAS Google Scholar
  17. Maringele, L. & Lydall, D. ExoI-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast _yku70_Δ mutants. Genes Dev. 16, 1919–1933 (2002).
    Article CAS Google Scholar
  18. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).
    Article CAS Google Scholar
  19. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).
    Article CAS Google Scholar
  20. Cosgrove, A.J., Nieduszynski, C.A. & Donaldson, A.D. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 16, 2485–2490 (2002).
    Article CAS Google Scholar
  21. Palmbos, P.L., Daley, J.M. & Wilson, T.E. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol. Cell. Biol. 25, 10782–10790 (2005).
    Article CAS Google Scholar
  22. Bertuch, A.A. & Lundblad, V. The Ku heterodimer performs separable activities at double strand breaks and chromosome termini. Mol. Cell. Biol. 23, 8202–8215 (2003).
    Article CAS Google Scholar
  23. Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001).
    Article CAS Google Scholar
  24. Rivera-Calzada, A., Spagnolo, L., Pearl, L.H. & Llorca, O. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8, 56–62 (2007).
    Article CAS Google Scholar
  25. Yoo, S., Kimzey, A. & Dynan, W.S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274, 20034–20039 (1999).
    Article CAS Google Scholar
  26. Bianchi, A. & de Lange, T. Ku binds telomeric DNA in vitro. J. Biol. Chem. 274, 21223–21227 (1999).
    Article CAS Google Scholar
  27. Daley, J.M., Palmbos, P.L., Wu, D. & Wilson, T.E. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451 (2005).
    Article CAS Google Scholar
  28. Valdar, W.S. Scoring residue conservation. Proteins 48, 227–241 (2002).
    Article CAS Google Scholar
  29. Mihalek, I., Res, I. & Lichtarge, O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J. Mol. Biol. 336, 1265–1282 (2004).
    Article CAS Google Scholar
  30. Madabushi, S. et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol. 316, 139–154 (2002).
    Article CAS Google Scholar
  31. Yao, H. et al. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 326, 255–261 (2003).
    Article CAS Google Scholar
  32. Lee, S.E., Paques, F., Sylvan, J. & Haber, J.E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).
    Article CAS Google Scholar
  33. Taddei, A., Hediger, F., Neumann, F.R., Bauer, C. & Gasser, S.M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004).
    Article CAS Google Scholar
  34. Chothia, C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105, 1–12 (1976).
    Article CAS Google Scholar
  35. Mishra, K. & Shore, D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr. Biol. 9, 1123–1126 (1999).
    Article CAS Google Scholar
  36. Boulton, S.J. & Jackson, S.P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).
    Article CAS Google Scholar
  37. Gell, D. & Jackson, S.P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 3494–3502 (1999).
    Article CAS Google Scholar
  38. Driller, L. et al. A short C-terminal domain of Yku70p is essential for telomere maintenance. J. Biol. Chem. 275, 24921–24927 (2000).
    Article CAS Google Scholar
  39. Song, K., Jung, D., Jung, Y., Lee, S.G. & Lee, I. Interaction of human Ku70 with TRF2. FEBS Lett. 481, 81–85 (2000).
    Article CAS Google Scholar
  40. Bowater, R. & Doherty, A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, e8 (2006).
    Article Google Scholar
  41. Doherty, A.J., Jackson, S.P. & Weller, G.R. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500, 186–188 (2001).
    Article CAS Google Scholar
  42. Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210–221 (2001).
    Article CAS Google Scholar
  43. Shenoy, S.K. et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).
    Article CAS Google Scholar
  44. Sowa, M.E. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat. Struct. Biol. 8, 234–237 (2001).
    Article CAS Google Scholar
  45. Martinez, J.J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–1023 (2005).
    Article CAS Google Scholar
  46. Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol. 5, 320–329 (2003).
    Article CAS Google Scholar
  47. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar
  48. Waterman, M.S. Introduction to Computational Biology (Chapman & Hall/CRC Press, Boca Raton, Florida, USA, 2000).
    Google Scholar
  49. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).
    Article CAS Google Scholar
  50. Roy, R., Meier, B., McAinsh, A.D., Feldmann, H.M. & Jackson, S.P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J. Biol. Chem. 279, 86–94 (2004).
    Article CAS Google Scholar

Download references