Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions (original) (raw)
References
van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998). ArticleCAS Google Scholar
d'Adda di Fagagna, F., Teo, S.H. & Jackson, S.P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev.18, 1781–1799 (2004). Article Google Scholar
Viscardi, V., Clerici, M., Cartagena-Lirola, H. & Longhese, M.P. Telomeres and DNA damage checkpoints. Biochimie87, 613–624 (2005). ArticleCAS Google Scholar
Riha, K., Heacock, M.L. & Shippen, D.E. The role of the nonhomologous end-Joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet.40, 237–277 (2006). ArticleCAS Google Scholar
Miyoshi, T., Sadaie, M., Kanoh, J. & Ishikawa, F. Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J. Biol. Chem.278, 1924–1931 (2003). ArticleCAS Google Scholar
Riha, K., Watson, J.M., Parkey, J. & Shippen, D.E. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J.21, 2819–2826 (2002). ArticleCAS Google Scholar
Hsu, H.L., Gilley, D., Blackburn, E.H. & Chen, D.J. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA96, 12454–12458 (1999). ArticleCAS Google Scholar
Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science280, 741–745 (1998). ArticleCAS Google Scholar
Celli, G.B., Denchi, E.L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol.8, 885–890 (2006). Article Google Scholar
Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J.21, 2207–2219 (2002). ArticleCAS Google Scholar
Ferreira, M.G. & Cooper, J.P. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell7, 55–63 (2001). ArticleCAS Google Scholar
Fisher, T.S., Taggart, A.K. & Zakian, V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol.11, 1198–1205 (2004). ArticleCAS Google Scholar
Porter, S.E., Greenwell, P.W., Ritchie, K.B. & Petes, T.D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res.24, 582–585 (1996). ArticleCAS Google Scholar
Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. & Gottschling, D.E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev.17, 2384–2395 (2003). ArticleCAS Google Scholar
Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol.8, 657–660 (1998). ArticleCAS Google Scholar
Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol.8, 831–834 (1998). ArticleCAS Google Scholar
Maringele, L. & Lydall, D. ExoI-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast _yku70_Δ mutants. Genes Dev.16, 1919–1933 (2002). ArticleCAS Google Scholar
Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J.17, 1819–1828 (1998). ArticleCAS Google Scholar
Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol.8, 653–656 (1998). ArticleCAS Google Scholar
Cosgrove, A.J., Nieduszynski, C.A. & Donaldson, A.D. Ku complex controls the replication time of DNA in telomere regions. Genes Dev.16, 2485–2490 (2002). ArticleCAS Google Scholar
Palmbos, P.L., Daley, J.M. & Wilson, T.E. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol. Cell. Biol.25, 10782–10790 (2005). ArticleCAS Google Scholar
Bertuch, A.A. & Lundblad, V. The Ku heterodimer performs separable activities at double strand breaks and chromosome termini. Mol. Cell. Biol.23, 8202–8215 (2003). ArticleCAS Google Scholar
Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature412, 607–614 (2001). ArticleCAS Google Scholar
Rivera-Calzada, A., Spagnolo, L., Pearl, L.H. & Llorca, O. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep.8, 56–62 (2007). ArticleCAS Google Scholar
Yoo, S., Kimzey, A. & Dynan, W.S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem.274, 20034–20039 (1999). ArticleCAS Google Scholar
Bianchi, A. & de Lange, T. Ku binds telomeric DNA in vitro. J. Biol. Chem.274, 21223–21227 (1999). ArticleCAS Google Scholar
Daley, J.M., Palmbos, P.L., Wu, D. & Wilson, T.E. Nonhomologous end joining in yeast. Annu. Rev. Genet.39, 431–451 (2005). ArticleCAS Google Scholar
Mihalek, I., Res, I. & Lichtarge, O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J. Mol. Biol.336, 1265–1282 (2004). ArticleCAS Google Scholar
Madabushi, S. et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol.316, 139–154 (2002). ArticleCAS Google Scholar
Yao, H. et al. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol.326, 255–261 (2003). ArticleCAS Google Scholar
Lee, S.E., Paques, F., Sylvan, J. & Haber, J.E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol.9, 767–770 (1999). ArticleCAS Google Scholar
Taddei, A., Hediger, F., Neumann, F.R., Bauer, C. & Gasser, S.M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J.23, 1301–1312 (2004). ArticleCAS Google Scholar
Chothia, C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol.105, 1–12 (1976). ArticleCAS Google Scholar
Mishra, K. & Shore, D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr. Biol.9, 1123–1126 (1999). ArticleCAS Google Scholar
Boulton, S.J. & Jackson, S.P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J.15, 5093–5103 (1996). ArticleCAS Google Scholar
Gell, D. & Jackson, S.P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res.27, 3494–3502 (1999). ArticleCAS Google Scholar
Driller, L. et al. A short C-terminal domain of Yku70p is essential for telomere maintenance. J. Biol. Chem.275, 24921–24927 (2000). ArticleCAS Google Scholar
Song, K., Jung, D., Jung, Y., Lee, S.G. & Lee, I. Interaction of human Ku70 with TRF2. FEBS Lett.481, 81–85 (2000). ArticleCAS Google Scholar
Bowater, R. & Doherty, A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet.2, e8 (2006). Article Google Scholar
Doherty, A.J., Jackson, S.P. & Weller, G.R. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett.500, 186–188 (2001). ArticleCAS Google Scholar
Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J.20, 210–221 (2001). ArticleCAS Google Scholar
Shenoy, S.K. et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem.281, 1261–1273 (2006). ArticleCAS Google Scholar
Sowa, M.E. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat. Struct. Biol.8, 234–237 (2001). ArticleCAS Google Scholar
Martinez, J.J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell123, 1013–1023 (2005). ArticleCAS Google Scholar
Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol.5, 320–329 (2003). ArticleCAS Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). ArticleCAS Google Scholar
Waterman, M.S. Introduction to Computational Biology (Chapman & Hall/CRC Press, Boca Raton, Florida, USA, 2000). Google Scholar
Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol.154, 367–382 (1987). ArticleCAS Google Scholar
Roy, R., Meier, B., McAinsh, A.D., Feldmann, H.M. & Jackson, S.P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J. Biol. Chem.279, 86–94 (2004). ArticleCAS Google Scholar