Cell cycle-dependent regulation of yeast telomerase by Ku (original) (raw)
References
van Steensel, B., Smogorzewska, A. & de lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998). ArticleCASPubMed Google Scholar
Sandell, L.L. & Zakian, V.A. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell75, 729–739 (1993). ArticleCASPubMed Google Scholar
Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63, 751–762 (1990). ArticleCASPubMed Google Scholar
Baur, J.A., Zou, Y., Shay, J.W. & Wright, W.E. Telomere position effect in human cells. Science292, 2075–2077 (2001). ArticleCASPubMed Google Scholar
Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Origin activation and formation of single-strand TG1–3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol. Cell. Biol.13, 4057–4065 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell72, 51–60 (1993). ArticleCASPubMed Google Scholar
Taggart, A.K.P., Teng, S.-C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science297, 1023–1026 (2002). ArticleCASPubMed Google Scholar
Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol.10, 487–490 (2000). ArticleCASPubMed Google Scholar
Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science280, 741–744 (1998). ArticleCASPubMed Google Scholar
Boulton, S.J. & Jackson, S.P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res.24, 4639–4648 (1996). ArticleCASPubMedPubMed Central Google Scholar
Porter, S.E., Greenwell, P.W., Ritchie, K.B. & Petes, T.D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae . Nucleic Acids Res.24, 582–585 (1996). ArticleCASPubMedPubMed Central Google Scholar
Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol.8, 831–834 (1998). ArticleCASPubMed Google Scholar
Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol.8, 653–656 (1998). ArticleCASPubMed Google Scholar
Hediger, F., Neumann, F.R., Van Houwe, G., Dubrana, K. & Gasser, S.M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol.12, 2076–2089 (2002). ArticleCASPubMed Google Scholar
Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J.17, 1819–1828 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol.8, 657–660 (1998). ArticleCASPubMed Google Scholar
Maringele, L. & Lydall, D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev.16, 1919–1933 (2002). ArticleCASPubMedPubMed Central Google Scholar
DuBois, M.L., Haimberger, Z.W., McIntosh, M.W. & Gottschling, D.E. A quantitative assay for telomere protection in Saccharomyces cerevisiae . Genetics161, 995–1013 (2002). CASPubMedPubMed Central Google Scholar
Cosgrove, A.J., Nieduszynski, C.A. & Donaldson, A.D. Ku complex controls the replication time of DNA in telomere regions. Genes Dev.16, 2485–2490 (2002). ArticleCASPubMedPubMed Central Google Scholar
McAinsh, A.D., Scott-Drew, S., Murray, J.A. & Jackson, S.P. DNA damage triggers disruption of telomeric silencing and Mec1p- dependent relocation of Sir3p. Curr. Biol.9, 963–966 (1999). ArticleCASPubMed Google Scholar
Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97, 621–633 (1999). ArticleCASPubMed Google Scholar
Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. & Gottschling, D.E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev.17, 2384–2395 (2003). ArticleCASPubMedPubMed Central Google Scholar
Peterson, S.E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat. Genet.27, 64–67 (2001). ArticleCASPubMed Google Scholar
Ferguson, B.M. & Fangman, W.L. A position effect on the time of replication origin activation in yeast. Cell68, 333–339 (1992). ArticleCASPubMed Google Scholar
Bertuch, A.A. & Lundblad, V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol.23, 8202–8215 (2003). ArticleCASPubMedPubMed Central Google Scholar
Livengood, A.J., Zaug, A.J. & Cech, T.R. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol. Cell. Biol.22, 2366–2374 (2002). ArticleCASPubMedPubMed Central Google Scholar
Larrivee, M., LeBel, C. & Wellinger, R.J. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev.18, 1391–1396 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet.36, 46–54 (2004). ArticleCASPubMed Google Scholar
Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell117, 323–335 (2004). ArticleCASPubMed Google Scholar
Chan, S.W.-L. & Blackburn, E.H. Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol. Cell11, 1379–1387 (2003). ArticleCASPubMed Google Scholar
Prescott, J. & Blackburn, E. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev.11, 2790–2800 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lin, J.-J. & Zakian, V.A. An in vitro assay for Saccharomyces telomerase requires EST1 . Cell81, 1127–1135 (1995). ArticleCASPubMed Google Scholar
Hughes, T.R., Evans, S.K., Weilbaecher, R.G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol.10, 809–812 (2000). ArticleCASPubMed Google Scholar
Zhou, J., Hidaka, K. & Futcher, B. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol.20, 1947–1955 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lundblad, V. & Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell57, 633–643 (1989). ArticleCASPubMed Google Scholar
Qi, H. & Zakian, V.A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev.14, 1777–1788 (2000). CASPubMedPubMed Central Google Scholar
Evans, S.K. & Lundblad, V. The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics162, 1101–1115 (2002). CASPubMedPubMed Central Google Scholar
Evans, S.K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science286, 117–120 (1999). ArticleCASPubMed Google Scholar
Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell104, 387–396 (2001). ArticleCASPubMed Google Scholar
d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol.11, 1192–1196 (2001). ArticleCASPubMed Google Scholar
Hsu, H.L., Gilley, D., Blackburn, E.H. & Chen, D.J. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA96, 12454–12458 (1999). ArticleCASPubMedPubMed Central Google Scholar
Myung, K. et al. Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol. Cell. Biol.24, 5050–5059 (2004). ArticlePubMedPubMed Central Google Scholar
Chai, W., Ford, L.P., Lenertz, L., Wright, W.E. & Shay, J.W. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J. Biol. Chem.277, 47242–47247 (2002). ArticleCASPubMed Google Scholar
Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics122, 19–27 (1989). CASPubMedPubMed Central Google Scholar
Sandell, L.L., Gottschling, D.E. & Zakian, V.A. Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. Proc. Natl. Acad. Sci. USA91, 12061–12065 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tsukamoto, Y., Taggart, A.K.P. & Zakian, V.A. The role of the Mre11–Rad50–Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol.11, 1328–1335 (2001). ArticleCASPubMed Google Scholar
Lorenz, M.C. et al. Gene disruption with PCR products in Saccharomyces cerevisiae . Gene158, 113–117 (1995). ArticleCASPubMed Google Scholar
Friedman, K.L. & Cech, T.R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev.13, 2863–2874 (1999). ArticleCASPubMedPubMed Central Google Scholar