The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor (original) (raw)
Dixon, T.C., Meselson, M., Guillemin, J. & Hanna, P.C. Anthrax. New Engl. J. Med.341, 815–826 (1999). ArticleCASPubMed Google Scholar
Duesbery, N.S. & Vande Woude, G.F. Anthrax toxins. Cell. Mol. Life Sci.55, 1599–1609 (1999). ArticleCASPubMed Google Scholar
Moayeri, M., Haines, D., Young, H.A. & Leppla, S.H. Bacillus anthracis lethal toxin induces TNF-α-independent hypoxia-mediated toxicity in mice. J. Clin. Invest.112, 670–682 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pezard, C., Berche, P. & Mock, M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun.59, 3472–3477 (1991). CASPubMedPubMed Central Google Scholar
Sellman, B.R., Mourez, M. & Collier, R.J. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science292, 695–697 (2001). ArticleCASPubMed Google Scholar
Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol.19, 958–961 (2001). ArticleCASPubMed Google Scholar
Duesbery, N. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science280, 734–737 (1998). ArticleCASPubMed Google Scholar
Vitale, G. et al. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun.248, 706–711 (1998). ArticleCASPubMed Google Scholar
Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M. & Montecucco, C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNγ-induced release of NO and TNFα. FEBS Lett.462, 199–204 (1999). ArticleCASPubMed Google Scholar
Vitale, G., Bernardi, L., Napolitani, G., Mock, M. & Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J.352, 739–745 (2000). ArticleCASPubMedPubMed Central Google Scholar
Enslen, H. & Davis, R.J. Regulation of MAP kinases by docking domains. Biol. Cell93, 5–14 (2001). ArticleCASPubMed Google Scholar
Agrawal, A. et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature424, 329–334 (2003). ArticleCASPubMed Google Scholar
Friedlander, A.M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem.261, 7123–7126 (1986). CASPubMed Google Scholar
Park, J.M., Greten, F.R., Li, Z.W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science297, 2048–2051 (2002). ArticleCASPubMed Google Scholar
Chopra, A.P., Boone, S.A., Liang, X. & Duesbery, N.S. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. J. Biol. Chem.278, 9402–9406 (2003). ArticleCASPubMed Google Scholar
Hammond, S.E. & Hanna, P.C. Lethal factor active-site mutations affect catalytic activity in vitro. Infect. Immun.66, 2374–2378 (1998). CASPubMedPubMed Central Google Scholar
Cummings, R.T. et al. A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc. Natl. Acad. Sci. USA99, 6603–6606 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tonello, F., Seveso, M., Marin, O., Mock, M. & Montecucco, C. Screening inhibitors of anthrax lethal factor. Nature418, 386 (2002). ArticleCASPubMed Google Scholar
Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell72, 767–778 (1993). ArticleCASPubMed Google Scholar
Turk, B.E., Huang, L.L., Piro, E.T. & Cantley, L.C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol.19, 661–667 (2001). ArticleCASPubMed Google Scholar
Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol.2, 110–116 (2000). ArticleCASPubMed Google Scholar
Enslen, H., Brancho, D.M. & Davis, R.J. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J.19, 1301–1311 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xu, B., Stippec, S., Robinson, F.L. & Cobb, M.H. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J. Biol. Chem.276, 26509–26515 (2001). ArticleCAS Google Scholar
Holmquist, B. & Vallee, B.L. Metal-coordinating substrate analogs as inhibitors of metalloenzymes. Proc. Natl. Acad. Sci. USA76, 6216–6220 (1979). ArticleCASPubMedPubMed Central Google Scholar
Moore, W.M. & Spilburg, C.A. Purification of human collagenases with a hydroxamic acid affinity column. Biochemistry25, 5189–5195 (1986). ArticleCASPubMed Google Scholar
Gowravaram, M.R. et al. Inhibition of matrix metalloproteinases by hydroxamates containing heteroatom-based modifications of the P1′ group. J. Med. Chem.38, 2570–2581 (1995). ArticleCASPubMed Google Scholar
Baxter, A.D. et al. A novel series of matrix metalloproteinase inhibitors for the treatment of inflammatory disorders. Bioorg. Med. Chem. Lett.7, 897–902 (1997). ArticleCAS Google Scholar
Grobelny, D., Poncz, L. & Galardy, R.E. Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry31, 7152–7154 (1992). ArticleCASPubMed Google Scholar
Levy, D.E. et al. Matrix metalloproteinase inhibitors: a structure-activity study. J. Med. Chem.41, 199–223 (1998). ArticleCASPubMed Google Scholar
Pannifer, A.D. et al. Crystal structure of the anthrax lethal factor. Nature414, 229–233 (2001). ArticleCASPubMed Google Scholar
Holmes, M.A. & Matthews, B.W. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. Biochemistry20, 6912–6920 (1981). ArticleCASPubMed Google Scholar
Grams, F. et al. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem.228, 830–841 (1995). ArticleCASPubMed Google Scholar
Gaucher, J.F. et al. Crystal structures of α-mercaptoacyldipeptides in the thermolysin active site: structural parameters for a Zn monodentation or bidentation in metalloendopeptidases. Biochemistry38, 12569–12576 (1999). ArticleCASPubMed Google Scholar
Dhanaraj, V. et al. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure4, 375–386 (1996). ArticleCASPubMed Google Scholar
Chen, L. et al. Crystal structure of the stromelysin catalytic domain at 2.0 Å resolution: inhibitor-induced conformational changes. J. Mol. Biol.293, 545–557 (1999). ArticleCASPubMed Google Scholar
Roswell, S. et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J. Mol. Biol.319, 173–181 (2002). Article Google Scholar
Panchal, R. et al. Identification of small molecule inhibitors of anthrax lethal factor. Nat. Struct. Mol. Biol.11, 67–72 (2004). ArticleCASPubMed Google Scholar
Roberts, J.E., Watters, J.W., Ballard, J.D. & Dietrich, W.F. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol. Microbiol.29, 581–591 (1998). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCASPubMed Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). ArticlePubMed Google Scholar
Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994). Article Google Scholar