Communication between ClpX and ClpP during substrate processing and degradation (original) (raw)
References
Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure—diverse function. Genes Cells6, 575–597 (2001). ArticleCASPubMed Google Scholar
Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623 (1998). ArticleCASPubMed Google Scholar
Gottesman, S., Wickner, S. & Maurizi, M.R. Protein quality control: triage by chaperones and proteases. Genes Dev.11, 815–823 (1997). ArticleCASPubMed Google Scholar
Gottesman, S., Maurizi, M.R. & Wickner, S. Regulatory subunits of energy-dependent proteases. Cell91, 435–438 (1997). ArticleCASPubMed Google Scholar
Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA94, 6070–6074 (1997). ArticleCASPubMedPubMed Central Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). ArticleCASPubMed Google Scholar
Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell91, 447–456 (1997). ArticleCASPubMed Google Scholar
Wang, J., Hartling, J.A. & Flanagan, J.M. Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J. Struct. Biol.124, 151–163 (1998). ArticleCASPubMed Google Scholar
Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature403, 800–805 (2000). ArticleCASPubMed Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067 (2000). ArticleCASPubMed Google Scholar
Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell103, 633–643 (2000). ArticleCASPubMed Google Scholar
Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature408, 115–120 (2000). ArticleCASPubMed Google Scholar
Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure9, 177–184 (2001). ArticleCASPubMed Google Scholar
Sousa, M.C. & McKay, D.B. Structure of Haemophilus influenzae HslV protein at 1.9 Å resolution, revealing a cation-binding site near the catalytic site. Acta Crystallogr. D57, 1950–1954 (2001). ArticleCASPubMed Google Scholar
Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell91, 335–345 (1997). ArticleCASPubMed Google Scholar
Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res.9, 27–43 (1999). CASPubMed Google Scholar
Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure9, 1107–1116 (2001). ArticleCASPubMed Google Scholar
Sousa, M.C., Kessler, B.M., Overkleeft, H.S. & McKay, D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol.318, 779–785 (2002). ArticleCASPubMed Google Scholar
Yoo, S.J. et al. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J. Biol. Chem.271, 14035–14040 (1996). ArticleCASPubMed Google Scholar
Seol, J.H. et al. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur. J. Biochem.247, 1143–1150 (1997). ArticleCASPubMed Google Scholar
Ramachandran, R., Hartmann, C., Song, H.K., Huber, R. & Bochtler, M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. USA99, 7396–7401 (2002). ArticleCASPubMedPubMed Central Google Scholar
Seong, I.S. et al. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem.277, 25976–25982 (2002). ArticleCASPubMed Google Scholar
Grimaud, R., Kessel, M., Beuron, F., Steven, A.C. & Maurizi, M.R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem.273, 12476–12481 (1998). ArticleCASPubMed Google Scholar
Beuron, F. et al. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol.123, 248–259 (1998). ArticleCASPubMed Google Scholar
Ortega, J., Singh, S.K., Ishikawa, T., Maurizi, M.R. & Steven, A.C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell6, 1515–1521 (2000). ArticleCASPubMed Google Scholar
Kim, Y.I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol.8, 230–233 (2001). ArticleCASPubMed Google Scholar
Singh, S.K. et al. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J. Biol. Chem.276, 29420–29429 (2001). ArticleCASPubMed Google Scholar
Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem.277, 46743–46752 (2002). ArticleCASPubMed Google Scholar
Kim, D.Y. & Kim, K.K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem.278, 50664–50670 (2003). ArticleCASPubMed Google Scholar
Thompson, M.W., Singh, S.K. & Maurizi, M.R. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J. Biol. Chem.269, 18209–18215 (1994). CASPubMed Google Scholar
Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell5, 639–648 (2000). ArticleCASPubMed Google Scholar
Hwang, B.J., Woo, K.M., Goldberg, A.L. & Chung, C.H. Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits. J. Biol. Chem.263, 8727–8734 (1988). CASPubMed Google Scholar
Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev.12, 1338–1347 (1998). ArticleCASPubMedPubMed Central Google Scholar
Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S. & Maurizi, M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA97, 8898–8903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell114, 511–520 (2003). ArticleCASPubMed Google Scholar
Wah, D.A., Levchenko, I., Baker, T.A. & Sauer, R.T. Characterization of a specificity factor for an AAA+ ATPase. Assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol.9, 1237–1245 (2002). ArticleCASPubMed Google Scholar
Wojtyra, U.A., Thibault, G., Tuite, A. & Houry, W.A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem.278, 48981–48990 (2003). ArticleCASPubMed Google Scholar
Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell11, 671–683 (2003). ArticleCASPubMed Google Scholar
Joshi, S.A., Baker, T.A. & Sauer, R.T. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol. Microbiol.48, 67–76 (2003). ArticleCASPubMed Google Scholar
Burton, R.E., Baker, T.A. & Sauer, R.T. Energy-dependent degradation: linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Sci.12, 893–902 (2003). ArticleCASPubMedPubMed Central Google Scholar
Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry38, 14906–14915 (1999). ArticleCASPubMed Google Scholar
Ortega, J., Lee, H.S., Maurizi, M.R. & Steven, A.C. Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J.21, 4938–4949 (2002). ArticleCASPubMedPubMed Central Google Scholar
Levchenko, I., Luo, L. & Baker, T.A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev.9, 2399–2408 (1995). ArticleCASPubMed Google Scholar
Levchenko, I., Yamauchi, M. & Baker, T.A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev.11, 1561–1572 (1997). ArticleCASPubMed Google Scholar
Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley Classics Library edn) 72–74 (Wiley, New York, 1993). Google Scholar
Karon, B.S., Mahaney, J.E. & Thomas, D.D. Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. Biochemistry33, 13928–13937 (1994). ArticleCASPubMed Google Scholar