Communication between ClpX and ClpP during substrate processing and degradation (original) (raw)

References

  1. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6, 575–597 (2001).
    Article CAS PubMed Google Scholar
  2. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).
    Article CAS PubMed Google Scholar
  3. Gottesman, S., Wickner, S. & Maurizi, M.R. Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997).
    Article CAS PubMed Google Scholar
  4. Gottesman, S., Maurizi, M.R. & Wickner, S. Regulatory subunits of energy-dependent proteases. Cell 91, 435–438 (1997).
    Article CAS PubMed Google Scholar
  5. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6070–6074 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  6. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).
    Article CAS PubMed Google Scholar
  7. Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).
    Article CAS PubMed Google Scholar
  8. Wang, J., Hartling, J.A. & Flanagan, J.M. Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J. Struct. Biol. 124, 151–163 (1998).
    Article CAS PubMed Google Scholar
  9. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).
    Article CAS PubMed Google Scholar
  10. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).
    Article CAS PubMed Google Scholar
  11. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).
    Article CAS PubMed Google Scholar
  12. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).
    Article CAS PubMed Google Scholar
  13. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).
    Article CAS PubMed Google Scholar
  14. Sousa, M.C. & McKay, D.B. Structure of Haemophilus influenzae HslV protein at 1.9 Å resolution, revealing a cation-binding site near the catalytic site. Acta Crystallogr. D 57, 1950–1954 (2001).
    Article CAS PubMed Google Scholar
  15. Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).
    Article CAS PubMed Google Scholar
  16. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).
    CAS PubMed Google Scholar
  17. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).
    Article CAS PubMed Google Scholar
  18. Sousa, M.C., Kessler, B.M., Overkleeft, H.S. & McKay, D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol. 318, 779–785 (2002).
    Article CAS PubMed Google Scholar
  19. Yoo, S.J. et al. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J. Biol. Chem. 271, 14035–14040 (1996).
    Article CAS PubMed Google Scholar
  20. Seol, J.H. et al. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur. J. Biochem. 247, 1143–1150 (1997).
    Article CAS PubMed Google Scholar
  21. Ramachandran, R., Hartmann, C., Song, H.K., Huber, R. & Bochtler, M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. USA 99, 7396–7401 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  22. Seong, I.S. et al. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277, 25976–25982 (2002).
    Article CAS PubMed Google Scholar
  23. Grimaud, R., Kessel, M., Beuron, F., Steven, A.C. & Maurizi, M.R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476–12481 (1998).
    Article CAS PubMed Google Scholar
  24. Beuron, F. et al. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248–259 (1998).
    Article CAS PubMed Google Scholar
  25. Ortega, J., Singh, S.K., Ishikawa, T., Maurizi, M.R. & Steven, A.C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6, 1515–1521 (2000).
    Article CAS PubMed Google Scholar
  26. Kim, Y.I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).
    Article CAS PubMed Google Scholar
  27. Singh, S.K. et al. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J. Biol. Chem. 276, 29420–29429 (2001).
    Article CAS PubMed Google Scholar
  28. Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002).
    Article CAS PubMed Google Scholar
  29. Kim, D.Y. & Kim, K.K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278, 50664–50670 (2003).
    Article CAS PubMed Google Scholar
  30. Thompson, M.W., Singh, S.K. & Maurizi, M.R. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J. Biol. Chem. 269, 18209–18215 (1994).
    CAS PubMed Google Scholar
  31. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).
    Article CAS PubMed Google Scholar
  32. Hwang, B.J., Woo, K.M., Goldberg, A.L. & Chung, C.H. Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits. J. Biol. Chem. 263, 8727–8734 (1988).
    CAS PubMed Google Scholar
  33. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  34. Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S. & Maurizi, M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97, 8898–8903 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  35. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).
    Article CAS PubMed Google Scholar
  36. Wah, D.A., Levchenko, I., Baker, T.A. & Sauer, R.T. Characterization of a specificity factor for an AAA+ ATPase. Assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol. 9, 1237–1245 (2002).
    Article CAS PubMed Google Scholar
  37. Wojtyra, U.A., Thibault, G., Tuite, A. & Houry, W.A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem. 278, 48981–48990 (2003).
    Article CAS PubMed Google Scholar
  38. Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).
    Article CAS PubMed Google Scholar
  39. Joshi, S.A., Baker, T.A. & Sauer, R.T. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol. Microbiol. 48, 67–76 (2003).
    Article CAS PubMed Google Scholar
  40. Burton, R.E., Baker, T.A. & Sauer, R.T. Energy-dependent degradation: linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Sci. 12, 893–902 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  41. Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry 38, 14906–14915 (1999).
    Article CAS PubMed Google Scholar
  42. Ortega, J., Lee, H.S., Maurizi, M.R. & Steven, A.C. Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J. 21, 4938–4949 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  43. Levchenko, I., Luo, L. & Baker, T.A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399–2408 (1995).
    Article CAS PubMed Google Scholar
  44. Levchenko, I., Yamauchi, M. & Baker, T.A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11, 1561–1572 (1997).
    Article CAS PubMed Google Scholar
  45. Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley Classics Library edn) 72–74 (Wiley, New York, 1993).
    Google Scholar
  46. Karon, B.S., Mahaney, J.E. & Thomas, D.D. Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. Biochemistry 33, 13928–13937 (1994).
    Article CAS PubMed Google Scholar

Download references