The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway (original) (raw)

References

  1. Lehmann, A.R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003).
    Article CAS Google Scholar
  2. Tian, M., Shinkura, R., Shinkura, N. & Alt, F.W. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24, 1200–1205 (2004).
    Article CAS Google Scholar
  3. Sargent, R.G. et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res. 28, 3771–3778 (2000).
    Article CAS Google Scholar
  4. McPherson, J.P. et al. Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304, 1822–1826 (2004).
    Article CAS Google Scholar
  5. Whitby, M.C., Osman, F. & Dixon, J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 278, 6928–6935 (2003).
    Article CAS Google Scholar
  6. Komori, K., Fujikane, R., Shinagawa, H. & Ishino, Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet. Syst. 77, 227–241 (2002).
    Article CAS Google Scholar
  7. Nishino, T., Komori, K., Tsuchiya, D., Ishino, Y. & Morikawa, K. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure (Camb) 13, 143–153 (2005).
    Article CAS Google Scholar
  8. Nishino, T., Komori, K., Ishino, Y. & Morikawa, K. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure (Camb) 11, 445–457 (2003).
    Article CAS Google Scholar
  9. Komori, K. et al. Cooperation of the N-terminal helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 279, 53175–53185 (2004).
    Article CAS Google Scholar
  10. Schurer, K.A., Rudolph, C., Ulrich, H.D. & Kramer, W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 166, 1673–1686 (2004).
    Article Google Scholar
  11. Prakash, R. et al. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase. J. Biol. Chem. 280, 7854–7860 (2005).
    Article CAS Google Scholar
  12. Scholz, B., Rechter, S., Drach, J.C., Townsend, L.B. & Bogner, E. Identification of the ATP-binding site in the terminase subunit pUL56 of human cytomegalovirus. Nucleic Acids Res. 31, 1426–1433 (2003).
    Article CAS Google Scholar
  13. Rocak, S., Emery, B., Tanner, N.K. & Linder, P. Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs. Nucleic Acids Res. 33, 999–1009 (2005).
    Article CAS Google Scholar
  14. Sonoda, E., Takata, M., Yamashita, Y.M., Morrison, C. & Takeda, S. Homologous DNA recombination in vertebrate cells. Proc. Natl. Acad. Sci. USA 98, 8388–8394 (2001).
    Article CAS Google Scholar
  15. Simpson, L.J. & Sale, J.E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 22, 1654–1664 (2003).
    Article CAS Google Scholar
  16. Yamamoto, K. et al. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol. Cell. Biol. 25, 34–43 (2005).
    Article CAS Google Scholar
  17. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).
    Article CAS Google Scholar
  18. Hatanaka, A. et al. Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol. Cell. Biol. 25, 1124–1134 (2005).
    Article CAS Google Scholar
  19. Nakanishi, K. et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc. Natl. Acad. Sci. USA 102, 1110–1115 (2005).
    Article CAS Google Scholar
  20. Pierce, A.J., Johnson, R.D., Thompson, L.H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).
    Article CAS Google Scholar
  21. Arakawa, H., Hauschild, J. & Buerstedde, J.M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002).
    Article CAS Google Scholar
  22. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).
    Article CAS Google Scholar
  23. Meetei, A.R. et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003).
    Article CAS Google Scholar
  24. Qiao, F., Moss, A. & Kupfer, G.M. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. J. Biol. Chem. 276, 23391–23396 (2001).
    Article CAS Google Scholar
  25. Mi, J. & Kupfer, G.M. The Fanconi anemia core complex associates with chromatin during S phase. Blood 105, 759–766 (2005).
    Article CAS Google Scholar
  26. D'Andrea, A.D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3, 23–34 (2003).
    Article CAS Google Scholar
  27. Joenje, H. & Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2, 446–457 (2001).
    Article CAS Google Scholar
  28. Scheller, J., Schurer, A., Rudolph, C., Hettwer, S. & Kramer, W. MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics 155, 1069–1081 (2000).
    CAS PubMed PubMed Central Google Scholar
  29. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  30. Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
    Article CAS Google Scholar
  31. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).
    Article CAS Google Scholar
  32. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003).
    Article CAS Google Scholar
  33. Schmidt, H.A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002).
    Article CAS Google Scholar
  34. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
    Article CAS Google Scholar
  35. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).
    Article CAS Google Scholar

Download references