The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway (original) (raw)
References
Lehmann, A.R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie85, 1101–1111 (2003). ArticleCAS Google Scholar
Tian, M., Shinkura, R., Shinkura, N. & Alt, F.W. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol.24, 1200–1205 (2004). ArticleCAS Google Scholar
Sargent, R.G. et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res.28, 3771–3778 (2000). ArticleCAS Google Scholar
McPherson, J.P. et al. Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science304, 1822–1826 (2004). ArticleCAS Google Scholar
Whitby, M.C., Osman, F. & Dixon, J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem.278, 6928–6935 (2003). ArticleCAS Google Scholar
Komori, K., Fujikane, R., Shinagawa, H. & Ishino, Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet. Syst.77, 227–241 (2002). ArticleCAS Google Scholar
Nishino, T., Komori, K., Tsuchiya, D., Ishino, Y. & Morikawa, K. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure (Camb)13, 143–153 (2005). ArticleCAS Google Scholar
Nishino, T., Komori, K., Ishino, Y. & Morikawa, K. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure (Camb)11, 445–457 (2003). ArticleCAS Google Scholar
Komori, K. et al. Cooperation of the N-terminal helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. J. Biol. Chem.279, 53175–53185 (2004). ArticleCAS Google Scholar
Schurer, K.A., Rudolph, C., Ulrich, H.D. & Kramer, W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics166, 1673–1686 (2004). Article Google Scholar
Prakash, R. et al. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase. J. Biol. Chem.280, 7854–7860 (2005). ArticleCAS Google Scholar
Scholz, B., Rechter, S., Drach, J.C., Townsend, L.B. & Bogner, E. Identification of the ATP-binding site in the terminase subunit pUL56 of human cytomegalovirus. Nucleic Acids Res.31, 1426–1433 (2003). ArticleCAS Google Scholar
Rocak, S., Emery, B., Tanner, N.K. & Linder, P. Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs. Nucleic Acids Res.33, 999–1009 (2005). ArticleCAS Google Scholar
Sonoda, E., Takata, M., Yamashita, Y.M., Morrison, C. & Takeda, S. Homologous DNA recombination in vertebrate cells. Proc. Natl. Acad. Sci. USA98, 8388–8394 (2001). ArticleCAS Google Scholar
Simpson, L.J. & Sale, J.E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J.22, 1654–1664 (2003). ArticleCAS Google Scholar
Yamamoto, K. et al. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol. Cell. Biol.25, 34–43 (2005). ArticleCAS Google Scholar
Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell15, 607–620 (2004). ArticleCAS Google Scholar
Hatanaka, A. et al. Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol. Cell. Biol.25, 1124–1134 (2005). ArticleCAS Google Scholar
Nakanishi, K. et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc. Natl. Acad. Sci. USA102, 1110–1115 (2005). ArticleCAS Google Scholar
Pierce, A.J., Johnson, R.D., Thompson, L.H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev.13, 2633–2638 (1999). ArticleCAS Google Scholar
Arakawa, H., Hauschild, J. & Buerstedde, J.M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science295, 1301–1306 (2002). ArticleCAS Google Scholar
Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell7, 249–262 (2001). ArticleCAS Google Scholar
Meetei, A.R. et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol.23, 3417–3426 (2003). ArticleCAS Google Scholar
Qiao, F., Moss, A. & Kupfer, G.M. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. J. Biol. Chem.276, 23391–23396 (2001). ArticleCAS Google Scholar
Mi, J. & Kupfer, G.M. The Fanconi anemia core complex associates with chromatin during S phase. Blood105, 759–766 (2005). ArticleCAS Google Scholar
D'Andrea, A.D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer3, 23–34 (2003). ArticleCAS Google Scholar
Joenje, H. & Patel, K.J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet.2, 446–457 (2001). ArticleCAS Google Scholar
Scheller, J., Schurer, A., Rudolph, C., Hettwer, S. & Kramer, W. MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics155, 1069–1081 (2000). CASPubMedPubMed Central Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCAS Google Scholar
Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res.32, D138–D141 (2004). ArticleCAS Google Scholar
Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res.31, 3497–3500 (2003). ArticleCAS Google Scholar
Schmidt, H.A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics18, 502–504 (2002). ArticleCAS Google Scholar
Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res.11, 1475–1489 (1983). ArticleCAS Google Scholar
Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J.21, 3414–3423 (2002). ArticleCAS Google Scholar