Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells (original) (raw)
Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S et al. (2004). The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther3: 772–775. ArticleCAS Google Scholar
Bader AG, Kang S, Vogt PK . (2006). Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci USA103: 1475–1479. ArticleCAS Google Scholar
Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. (2006). A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene25: 6648–6659. ArticleCAS Google Scholar
Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J et al. (2000). Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J14: 895–903. ArticleCAS Google Scholar
Bouchard C, Marquardt J, Bras A, Medema RH, Eilers M . (2004). Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J23: 2830–2840. ArticleCAS Google Scholar
Bousquet M, Recher C, Queleen C, Demur C, Payrastre B, Brousset P . (2005). Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia. Br J Haematol131: 411–413. ArticleCAS Google Scholar
Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE et al. (2004). Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res64: 5048–5050. ArticleCAS Google Scholar
Cammenga J, Horn S, Bergholz U, Sommer G, Besmer P, Fiedler W et al. (2005). Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood106: 3958–3961. ArticleCAS Google Scholar
Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res64: 7678–7681. ArticleCAS Google Scholar
Casamayor A, Morrice NA, Alessi DR . (1999). Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J342 (Part 2): 287–292. ArticleCAS Google Scholar
Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG . (2005). Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol205: 498–506. ArticleCAS Google Scholar
Frohling S, Scholl C, Gilliland DG, Levine RL . (2005). Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol23: 6285–6295. ArticleCAS Google Scholar
Gilliland DG, Griffin JD . (2002). Role of FLT3 in leukemia. Curr Opin Hematol9: 274–281. Article Google Scholar
Grandage VL, Gale RE, Linch DC, Khwaja A . (2005). PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia19: 586–594. ArticleCAS Google Scholar
Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-Myc proteolysis and subnuclear localization. J Biol Chem278: 51606–51612. ArticleCAS Google Scholar
Hashimoto K, Matsumura I, Tsujimura T, Kim DK, Ogihara H, Ikeda H et al. (2003). Necessity of tyrosine 719 and phosphatidylinositol 3′-kinase-mediated signal pathway in constitutive activation and oncogenic potential of c-Kit receptor tyrosine kinase with the Asp814Val mutation. Blood101: 1094–1102. ArticleCAS Google Scholar
Hoffman B, Amanullah A, Shafarenko M, Liebermann DA . (2002). The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene21: 3414–3421. ArticleCAS Google Scholar
Hummerdal P, Andersson P, Willander K, Linderholm M, Soderkvist P, Jonsson JI . (2006). Absence of hot spot mutations of the PIK3CA gene in acute myeloid leukaemia. Eur J Haematol77: 86–87. ArticleCAS Google Scholar
Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J et al. (2005). Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res65: 4562–4567. ArticleCAS Google Scholar
Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennström S et al. (1998). Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J17: 743–753. ArticleCAS Google Scholar
Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W et al. (2002). Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia16: 894–901. ArticleCAS Google Scholar
Kang S, Bader AG, Vogt PK . (2005). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA102: 802–807. ArticleCAS Google Scholar
Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT . (1996). Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol16: 4117–4127. ArticleCAS Google Scholar
Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. (2006). Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood108: 2358–2365. ArticleCAS Google Scholar
Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW et al. (2005). PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene24: 1477–1480. ArticleCAS Google Scholar
Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al. (2005). Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res11: 2875–2878. ArticleCAS Google Scholar
Li VS, Wong CW, Chan TL, Chan AS, Zhao W, Chu KM et al. (2005). Mutations of PIK3CA in gastric adenocarcinoma. BMC Cancer5: 29. Article Google Scholar
Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. (2003). Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia17: 1–8. ArticleCAS Google Scholar
Malempati S, Tibbitts D, Cunningham M, Akkari Y, Olson S, Fan G et al. (2006). Aberrant stabilization of c-Myc protein in some lymphoblastic leukemias. Leukemia20: 1572–1581. ArticleCAS Google Scholar
Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. (2006). Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia20: 911–928. ArticleCAS Google Scholar
Min YH, Cheong JW, Kim JY, Eom JI, Lee ST, Hahn JS et al. (2004). Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res64: 5225–5231. ArticleCAS Google Scholar
Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. (2003). Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia17: 995–997. ArticleCAS Google Scholar
Muller CI, Miller CW, Hofmann WK, Gross ME, Walsh CS, Kawamata N et al. (2007). Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. Leuk Res31: 27–32. Article Google Scholar
Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T et al. (2006). Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia20: 230–238. ArticleCAS Google Scholar
Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH et al. (2001). The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res61: 7426–7429. CASPubMed Google Scholar
Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM et al. (2005). Antileukemic activity of rapamycin in acute myeloid leukemia. Blood105: 2527–2534. ArticleCAS Google Scholar
Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . (1996). Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J15: 2442–2451. ArticleCAS Google Scholar
Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES et al. (2006). Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood108: 1668–1676. ArticleCAS Google Scholar
Samuels Y, Diaz Jr LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I et al. (2005). Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell7: 561–573. ArticleCAS Google Scholar
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science304: 554. ArticleCAS Google Scholar
Schade AE, Powers JJ, Wlodarski MW, Maciejewski JP . (2006). Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis. Blood107: 4834–4840. ArticleCAS Google Scholar
Schubbert S, Shannon K, Bollag G . (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer7: 295–308. ArticleCAS Google Scholar
Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C et al. (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med196: 1227–1240. ArticleCAS Google Scholar
Shelton JG, Blalock WL, White ER, Steelman LS, McCubrey JA . (2004). Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle3: 503–512. CASPubMed Google Scholar
Shivakrupa R, Bernstein A, Watring N, Linnekin D . (2003). Phosphatidyl 3′-kinase is required for growth of mast cells expressing the Kit catalytic domain mutant. Cancer Res63: 4412–4419. CASPubMed Google Scholar
Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C et al. (1993). Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors8: 197–209. ArticleCAS Google Scholar
Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. (2005). Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood106: 1063–1066. ArticleCAS Google Scholar
Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A et al. (2006). Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood108: 4178–4186. ArticleCAS Google Scholar
Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer2: 489–501. ArticleCAS Google Scholar
Wick MJ, Ramos FJ, Chen H, Quon MJ, Dong LQ, Liu F . (2003). Mouse 3-phosphoinositide-dependent protein kinase-1 undergoes dimerization and trans-phosphorylation in the activation loop. J Biol Chem278: 42913–42919. ArticleCAS Google Scholar
Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . (2003). Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood102: 972–980. ArticleCAS Google Scholar
Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature441: 518–522. ArticleCAS Google Scholar
Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. (2004). Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia18: 267–275. ArticleCAS Google Scholar