The phosphatidylinositol 3-Kinase–AKT pathway in human cancer (original) (raw)
Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature315, 239–242 (1985). ArticleCASPubMed Google Scholar
White, M. F. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem.182, 3–11 (1998). ArticleCASPubMed Google Scholar
Inukai, K. et al. p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase p50α, p55α, and p85α, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem.272, 7873–7882 (1997). ArticleCASPubMed Google Scholar
Kaliman, P. et al. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells. Mol. Endocrinol.12, 66–77(1998). ArticleCASPubMed Google Scholar
Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C. R. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85 α regulatory subunit. Mol. Cell. Biol.20, 8035–8046 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol.18, 1379–1387 (1998).Shows that p85 can both extend the half-life of p110 and inhibit its activity. This inhibitory effect was relieved by the binding of phosphotyrosine peptides to the SH2 domain of p85. ArticleCASPubMedPubMed Central Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994).Links RAS to the PI3K–AKT pathway. ArticleCASPubMed Google Scholar
Kodaki, T. et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol.4, 798–806 (1994). ArticleCASPubMed Google Scholar
Cuevas, B. D. et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J. Biol. Chem.276, 27455–27461 (2001). ArticleCASPubMed Google Scholar
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet.15, 356–362 (1997). ArticleCASPubMed Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997).References10and11describe the molecular cloning ofPTENon the basis of breast cancer and glioma studies, respectively, and reports a high frequency ofPTENmutation by various cancer cell lines, xenografts and primary tumours. ArticleCASPubMed Google Scholar
Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA95, 13513–13518 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haas-Kogan, D. et al. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr. Biol.8, 1195–1198 (1998). ArticleCASPubMed Google Scholar
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998).Shows that PTEN is a negative regulator of AKT and can reduce intracellular levels of PIP3and dephosphorylate PIP3in vitro. ArticleCASPubMed Google Scholar
Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E. & Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA95, 15587–15591 (1998). ArticleCASPubMedPubMed Central Google Scholar
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273, 13375–13378 (1998).The first report that PTEN has lipid phosphatase actitivty. ArticleCASPubMed Google Scholar
Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol.146, 389–403 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science280, 1614–1617 (1998). ArticleCASPubMed Google Scholar
Scheid, M. P. et al. Phosphatidylinositol(3,4,5)P3 is essential but not sufficient for PKB activation: phosphatidylinositol(3,4)P2 is required for PKB phosphorylation at Ser473. Studies using cells from _Ship_−/− knockout mice. J. Biol. Chem.277, 9027 – 9035 (2002). ArticleCASPubMed Google Scholar
Helgason, C. D. et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of B lymphocytes in SHIP−/− mice. J. Exp. Med.191, 781–794 (2000). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/AKT activation and myeloid cell survival. Genes Dev.13, 786–791 (1999).Shows that Ship-deficient mice have hyperproliferation of myeloid cells, increased survival of neutrophils, and enhanced PIP3accumulation and Akt activation upon engagement of certain cytokine receptors. ArticleCASPubMedPubMed Central Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927 (1999). ArticleCASPubMed Google Scholar
Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature Rev. Mol. Cell Biol.2, 760–768 (2001). ArticleCAS Google Scholar
Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem.272, 31515–31524 (1997). ArticleCASPubMed Google Scholar
Bellacosa, A. et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene17, 313–325 (1998). ArticleCASPubMed Google Scholar
Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science277, 567–570 (1997).Shows that PIP3is necessary for AKT recruitment to the membrane and phosphorylation of AKT on the PDK1 site (Thr308). ArticleCASPubMed Google Scholar
Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase-Bα. Curr. Biol.7, 261–269 (1997). ArticleCASPubMed Google Scholar
Toker, A. & Newton, A. C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J. Biol. Chem.275, 8271–8274 (2000). ArticleCASPubMed Google Scholar
Laine, J., Kunstle, G., Obata, T., Sha, M. & Noguchi, M. The protooncogene TCL1 is an Akt kinase coactivator. Mol. Cell6, 395–407 (2000). ArticleCASPubMed Google Scholar
Andjelkovic, M. et al. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC–PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl Acad. Sci. USA93, 5699–5704 (1996). ArticleCASPubMedPubMed Central Google Scholar
Maira, S. M. et al. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science294, 374–380 (2001). ArticleCASPubMed Google Scholar
Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA97, 10832–10837 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science275, 661–665 (1997). ArticleCASPubMed Google Scholar
Li, J. et al. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res.58, 5667–5672 (1998). CASPubMed Google Scholar
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997).Shows that growth-factor-induced activation of AKT phosphorylates BAD and inhibits BAD-induced apoptosis in primary neurons. ArticleCASPubMed Google Scholar
Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science282, 1318–1321 (1998). ArticleCASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Romashkova, J. A. & Makarov, S. S. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature401, 86–90 (1999).Shows that PDGF stimulation of fibroblasts causes phosphorylation and activation of IKK by AKT and subsequent activation of NF-κB. This finding links the PI3K–AKT pathway to anti-apoptotic transcription. ArticleCASPubMed Google Scholar
Kane, L. P., Shapiro, V. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol.9, 601–604 (1999). ArticleCASPubMed Google Scholar
Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA98, 11598–11603 (2001).Shows that phosphorylation of MDM2 by AKT enhances its nuclear translocation, resulting in destabilization of the p53 protein. ArticleCASPubMedPubMed Central Google Scholar
Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol.3, 973–982 (2001). ArticleCASPubMed Google Scholar
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.12, 3499–3511 (1998). ArticleCASPubMedPubMed Central Google Scholar
Graff, J. R. et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem.275, 24500–24505 (2000). ArticleCASPubMed Google Scholar
Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell. Biol.20, 9138–9148 (2000). ArticleCASPubMedPubMed Central Google Scholar
Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature404, 782–787 (2000). ArticleCASPubMed Google Scholar
Lawlor, M. A. & Rotwein, P. Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol. Cell. Biol.20, 8983–8995 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rossig, L. et al. Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol. Cell. Biol.21, 5644–5657 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vemuri, G. S. & Rittenhouse, S. E. Wortmannin inhibits serum-induced activation of phosphoinositide 3-kinase and proliferation of CHRF-288 cells. Biochem. Biophys. Res. Commun.202, 1619–1623 (1994). ArticleCASPubMed Google Scholar
Castoria, G. et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J.20, 6050–6059 (2001).Shows that the induction of PI3K triggers oestrogen-dependent S-phase entry in breast cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell103, 253–262 (2000). ArticleCASPubMed Google Scholar
Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. & Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J.344, 427–431 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brunn, G. J. et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J.15, 5256–5267 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bodine, S. C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biol.3, 1014–1019 (2001). ArticleCASPubMed Google Scholar
Rommel, C. et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biol.3, 1009–1013 (2001). ArticleCASPubMed Google Scholar
Radimerski, T. et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nature Cell Biol.4, 251–255 (2002). ArticleCASPubMed Google Scholar
Pullen, N. et al. Phosphorylation and activation of p70s6k by PDK1. Science279, 707–710 (1998). ArticleCASPubMed Google Scholar
Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol.10, 401–404 (2000). ArticleCASPubMed Google Scholar
Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol.1, 419–425 (2000). ArticleCAS Google Scholar
Welch, H., Eguinoa, A., Stephens, L. R. & Hawkins, P. T. Protein kinase B and Rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J. Biol. Chem.273, 11248–11256 (1998). ArticleCASPubMed Google Scholar
Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science279, 558–560 (1998).Shows that phosphorylation of the RAC-specific guanine nucleotide exchange factor (GEF) VAV1 is enhanced by PIP3and inhibited by PIP2. These findings link a GEF to PI3K-mediated RAC activation. ArticleCASPubMed Google Scholar
Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P(3)- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell108, 809–821 (2002). ArticleCASPubMed Google Scholar
Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell9, 95–108 (2002). ArticleCASPubMed Google Scholar
Jimenez, C. et al. Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J. Cell Biol.151, 249–261 (2000). ArticleCASPubMedPubMed Central Google Scholar
Brunet, A. et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol.21, 952–965 (2001). ArticleCASPubMedPubMed Central Google Scholar
Park, J. et al. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J.18, 3024–3033 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stocker, H. et al. Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science295, 2088 –2091 (2002).Uses fly genetics to argue that Akt might be the sole effector of PIP3action. ArticleCASPubMed Google Scholar
Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet.21, 99–102 (1999). ArticleCASPubMed Google Scholar
Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer64, 280–285 (1995). ArticleCASPubMed Google Scholar
Cheng, J. Q. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl Acad. Sci. USA93, 3636–3641 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ruggeri, B. A., Huang, L., Wood, M., Cheng, J. Q. & Testa, J. R. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol. Carcinog.21, 81–86 (1998). ArticleCASPubMed Google Scholar
Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res.61, 7426–7429 (2001). CASPubMed Google Scholar
Jimenez, C. et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J.17, 743–753 (1998). ArticleCASPubMedPubMed Central Google Scholar
Moscatello, D. K., Holgado-Madruga, M., Emlet, D. R., Montgomery, R. B. & Wong, A. J. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J. Biol. Chem.273, 200–206 (1998). ArticleCASPubMed Google Scholar
Watanabe, T. et al. A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol. Oncol.81, 172–177 (2001). ArticleCASPubMed Google Scholar
Barlund, M. et al. Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res.60, 5340–5344 (2000). CASPubMed Google Scholar
Barlund, M. et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl Cancer Inst.92, 1252–1259 (2000). ArticleCASPubMed Google Scholar
Ali, I. U., Schriml, L. M. & Dean, M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J. Natl Cancer Inst.91, 1922–1932 (1999).A thorough review of the frequency ofPTENmutation in various cancers. ArticleCASPubMed Google Scholar
Georgescu, M. M., Kirsch, K. H., Akagi, T., Shishido, T. & Hanafusa, H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc. Natl Acad. Sci. USA96, 10182–10187 (1999). ArticleCASPubMedPubMed Central Google Scholar
Whang, Y. et al. Frequent transcriptional silencing of the tumor suppressor PTEN/MMAC1 gene in prostate cancer xenografts. Proc. Natl Acad. Sci. USA95, 5246 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pekarsky, Y. et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl Acad. Sci. USA97, 3028–3033 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shioi, T. et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J.19, 2537–2548 (2000).Shows that cardiac-specific expression of constitutively active p110 causes an enlargement of the heart and that dominant-negative p110 causes a reduction in heart size. ArticleCASPubMedPubMed Central Google Scholar
Borlado, L. R. et al. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J.14, 895–903 (2000). ArticleCASPubMed Google Scholar
Jones, R. G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor κB activation, and Bcl-xL levels in vivo. J. Exp. Med.191, 1721–1734 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tuttle, R. L. et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nature Med.7, 1133–1137 (2001). ArticleCASPubMed Google Scholar
Bernal-Mizrachi, E., Wen, W., Stahlhut, S., Welling, C. M. & Permutt, M. A. Islet β-cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J. Clin. Invest.108, 1631–1638 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hutchinson, J., Jin, J., Cardiff, R. D., Woodgett, J. R. & Muller, W. J. Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol. Cell. Biol.21, 2203–2212 (2001). ArticleCASPubMedPubMed Central Google Scholar
Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet.25, 55–57 (2000).Shows that co-expression of activated Ras and Akt in neural progenitor cells in the mouse brain induces glioblastoma. ArticleCASPubMed Google Scholar
Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in Pten+/− mice. Cancer Res.60, 3605–3611 (2000). CASPubMed Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998). ArticleCASPubMed Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999). ArticleCASPubMedPubMed Central Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet.19, 348–355 (1998).The first report of aPten-knockout mouse phenotype. Homozygous deletion causes embryonic lethality, whereas heterozygous animals are viable but develop various tumors. ArticleCASPubMed Google Scholar
Goldman, J. M. & Melo, J. V. Targeting the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1084–1086 (2001). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
van Oosterom, A. T. et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet358, 1421–1423 (2001). ArticleCASPubMed Google Scholar
Baselga, J. et al. in 2001 AACR-NCI–EORTC International Conference128 (American Association for Cancer Research, Fontainebleau Hilton Hotel. Miami Beach, Florida, 2001). Google Scholar
Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res.62, 1087–1092 (2002).Shows that non-toxic doses of LY294002 can increase the efficacy of the chemotherapeutic paclitaxel in an ovarian cancer xenograft model. CASPubMed Google Scholar
Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem.274, 10963–10968 (1999).Describes the phenotype of the p110α-targeted deletion. ArticleCASPubMed Google Scholar
Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-Abl proto-oncogene. Cell65, 1153–1163 (1991). ArticleCASPubMed Google Scholar
Reith, A. D. et al. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-Kit receptor. Genes Dev.4, 390–400 (1990). ArticleCASPubMed Google Scholar
Soriano, P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development124, 2691–2700 (1997). ArticleCASPubMed Google Scholar
Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA98, 10314–10319 (2001).Shows that loss ofPTENor stable expression of constitutively activeAKTsensitizes tumours to inhibition of mTOR. ArticleCASPubMedPubMed Central Google Scholar
Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA98, 10320–10325 (2001).Shows that pre-neoplastic uterine lesions fail to develop or regress inPten+/−mice that are treated with an inhibitor of mTor. ArticleCASPubMedPubMed Central Google Scholar
Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med.8, 128–135 (2002). ArticleCASPubMed Google Scholar
Chan, J. et al. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell1, 257–267 (2002). ArticleCASPubMed Google Scholar
Mayo, L. D., Dixon, J. E., Durden, D. L., Tonks, N. K. & Donner, D. B. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J. Biol. Chem.277, 5484–5489 (2002). ArticleCASPubMed Google Scholar
Li, D. M. & Sun, H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc. Natl Acad. Sci. USA95, 15406–15411 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heymont, J. et al. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation. Proc. Natl Acad. Sci. USA97, 12672–12677 (2000). ArticleCASPubMedPubMed Central Google Scholar
Casamayor, A., Torrance, P. D., Kobayashi, T., Thorner, J. & Alessi, D. R. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol.9, 186–197 (1999). ArticleCASPubMed Google Scholar
Cardenas, M. E., Cutler, N. S., Lorenz, M. C., Di Como, C. J. & Heitman, J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev.13, 3271–3279 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science292, 288–290 (2001). ArticleCASPubMed Google Scholar
Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature382, 536–539 (1996).Shows that mutations inAge1, theC. elegansPi3k homologue, causes dauer formation and an extension of lifespan. ArticleCASPubMed Google Scholar
Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science277, 942–946 (1997). ArticleCASPubMed Google Scholar
Paradis, S., Ailion, M., Toker, A., Thomas, J. H. & Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev.13, 1438–1452 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF16 by insulin/IGF1 and germline signaling. Nature Genet.28, 139–145 (2001). ArticleCASPubMed Google Scholar
Mihaylova, V. T., Borland, C. Z., Manjarrez, L., Stern, M. J. & Sun, H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl Acad. Sci. USA96, 7427–7432 (1999). ArticleCASPubMedPubMed Central Google Scholar
Verdu, J., Buratovich, M. A., Wilder, E. L. & Birnbaum, M. J. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nature Cell Biol.1, 500–506 (1999). ArticleCASPubMed Google Scholar
Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev.14, 2712–2724 (2000). ArticleCASPubMedPubMed Central Google Scholar
Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science285, 2126–2129 (1999). ArticleCASPubMed Google Scholar
Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biol.3, 596–601 (2001). ArticleCASPubMed Google Scholar
Goberdhan, D. C., Paricio, N., Goodman, E. C., Mlodzik, M. & Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev.13, 3244–3258 (1999).Shows that inDrosophila, Pten is a negative regulator of Pi3k and mutations inPtenresult in increased cell size and cell number. ArticleCASPubMedPubMed Central Google Scholar
Gao, X., Neufeld, T. P. & Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and-independent pathways. Dev. Biol.221, 404–418 (2000). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kγ. Nature406, 897–902 (2000). ArticleCASPubMed Google Scholar
Barbier, M. et al. Tumour biology. Weakening link to colorectal cancer? Nature413, 796 (2001). ArticleCASPubMed Google Scholar
Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genet.26, 379–382 (2000).Shows that targeted deletion of all isoforms of Pi3k regulatory subunits results in lethality, unlike deletions of individual isoforms. ArticleCASPubMed Google Scholar
Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science283, 390–392 (1999). ArticleCASPubMed Google Scholar
Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem.276, 38349–38352 (2001). ArticleCASPubMed Google Scholar
Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev.15, 2203–2208 (2001).Shows thatAkt1-deficient mice are smaller than wild-type littermates, have a shorter lifespan after exposure to genotoxic stress and show more susceptibility to apoptosis in the testes and thymus. ArticleCASPubMedPubMed Central Google Scholar
Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science292, 1728–1731 (2001). ArticleCASPubMed Google Scholar
Wang, S. I. et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res.57, 4183–4186 (1997). CASPubMed Google Scholar
Saito, M. et al. Allelic imbalance and mutations of the PTEN gene in ovarian cancer. Int. J. Cancer85, 160–165 (2000). ArticleCASPubMed Google Scholar
Sun, M. et al. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol.159, 431–437 (2001). ArticleCASPubMedPubMed Central Google Scholar
Teng, D. H. et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res.57, 5221–5225 (1997). CASPubMed Google Scholar
Sun, M. et al. Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor-α (ERα) via interaction between ERα and PI3K. Cancer Res.61, 5985–5991 (2001). CASPubMed Google Scholar
Yokoyama, Y. et al. Expression of PTEN and PTEN pseudogene in endometrial carcinoma. Int. J. Mol. Med.6, 47–50 (2000). CASPubMed Google Scholar
Salvesen, H. B. et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int. J. Cancer91, 22–26 (2001). ArticleCASPubMed Google Scholar
Kawamura, N. et al. PTEN/MMAC1 mutations in hepatocellular carcinomas: somatic inactivation of both alleles in tumors. Jpn. J. Cancer Res.90, 413–418 (1999). ArticleCASPubMedPubMed Central Google Scholar
Celebi, J. T., Shendrik, I., Silvers, D. N. & Peacocke, M. Identification of PTEN mutations in metastatic melanoma specimens. J. Med. Genet.37, 653–657 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chang, J. G. et al. Mutation analysis of the PTEN/MMAC1 gene in cancers of the digestive tract. Eur. J. Cancer35, 647–651 (1999). ArticleCASPubMed Google Scholar
Forgacs, E. et al. Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene17, 1557–1565 (1998). ArticleCASPubMed Google Scholar
Alimov, A. et al. Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma. Anticancer Res.19, 3841–3846 (1999). CASPubMed Google Scholar
Dahia, P. L. et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res.57, 4710–4713 (1997). CASPubMed Google Scholar
Halachmi, N. et al. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosom. Cancer23, 239–243 (1998). ArticleCASPubMed Google Scholar
Hsieh, M. C. et al. Mutation analysis of PTEN/MMAC1 in sporadic thyroid tumors. Kaohsiung J. Med. Sci.16, 9–12 (2000). CASPubMed Google Scholar
Ringel, M. D. et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res.61, 6105–6111 (2001). CASPubMed Google Scholar
Nakahara, Y. et al. Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma. Leukemia12, 1277–1280 (1998). ArticleCASPubMed Google Scholar
Sakai, A., Thieblemont, C., Wellmann, A., Jaffe, E. S. & Raffeld, M. PTEN gene alterations in lymphoid neoplasms. Blood92, 3410–3415 (1998). ArticleCASPubMed Google Scholar
Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science283, 393–397 (1999). ArticleCASPubMed Google Scholar
Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet.21, 230–235 (1999). ArticleCASPubMed Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase-γ in inflammation. Science287, 1049–1053 (2000). ArticleCASPubMed Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science287, 1040–1046 (2000). ArticleCASPubMed Google Scholar