Wnt signaling activation and mammary gland hyperplasia in MMTV–LRP6 transgenic mice: implication for breast cancer tumorigenesis (original) (raw)
Amundadottir LT, Merlino G, Dickson RB . (1996). Transgenic mouse models of breast cancer. Breast Cancer Res Treat39: 119–135. ArticleCASPubMed Google Scholar
Bafico A, Gazit A, Wu-Morgan SS, Yaniv A, Aaronson SA . (1998). Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts. Oncogene16: 2819–2825. ArticleCASPubMed Google Scholar
Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell6: 497–506. ArticleCASPubMed Google Scholar
Bartkova J, Lukas J, Müller H, Lützhøft D, Strauss M, Bartek J . (1994). Cyclin D1 protein expression and function in human breast cancer. Int J Cancer57: 353–361. ArticleCASPubMed Google Scholar
Blavier L, Lazaryev A, Dorey F, Shackleford GM, DeClerck YA . (2006). Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res66: 2691–2699. ArticleCASPubMed Google Scholar
Bu G, Geuze HJ, Strous GJ, Schwartz AL . (1995). 39-kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J14: 2269–2280. ArticleCASPubMedPubMed Central Google Scholar
Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. (2000). The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene19: 968–988. ArticleCASPubMed Google Scholar
Chenard MP, Lutz Y, Mechine-Neuville A, Stoll I, Bellocq JP, Rio MC et al. (1999). Presence of high levels of MT1-MMP protein in fibroblastic cells of human invasive carcinomas. Int J Cancer82: 208–212. ArticleCASPubMed Google Scholar
Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene18: 2883–2891. ArticleCASPubMed Google Scholar
Deming SL, Nass SJ, Dickson RB, Trock BJ . (2000). C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer83: 1688–1695. ArticleCASPubMedPubMed Central Google Scholar
Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer2: 161–174. ArticleCASPubMed Google Scholar
Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta1653: 1–24. CASPubMed Google Scholar
Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res54: 1812–1817. CASPubMed Google Scholar
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science281: 1509–1512. ArticleCASPubMed Google Scholar
Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH . (1996). Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol149: 273–282. CASPubMedPubMed Central Google Scholar
Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol22: 1172–1183. ArticleCASPubMedPubMed Central Google Scholar
Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol25: 641–649. CASPubMed Google Scholar
Lane TF, Leder P . (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene15: 2133–2144. ArticleCASPubMed Google Scholar
Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S et al. (2002). Activation of AXIN2 expression by β-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem277: 21657–21665. ArticleCASPubMed Google Scholar
Li Y, Lu W, He X, Schwartz AL, Bu G . (2004). LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering β-catenin subcellular distribution. Oncogene23: 9129–9135. ArticleCASPubMed Google Scholar
Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y et al. (2000). β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA97: 4262–4266. ArticleCASPubMedPubMed Central Google Scholar
Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO . (2006). The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem281: 35081–35087. ArticleCASPubMed Google Scholar
Lindvall C, Bu W, Williams BO, Li Y . (2007). Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev3: 157–168. ArticleCASPubMed Google Scholar
Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA et al. (2009). The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One4: e5813. ArticlePubMedPubMed Central Google Scholar
Lu W, Kim KA, Liu J, Abo A, Feng X, Cao X et al. (2008). R-spondin1 synergizes with Wnt3A in inducing osteoblast differentiation and osteoprotegerin expression. FEBS Lett582: 643–650. ArticleCASPubMed Google Scholar
Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol22: 1184–1193. ArticleCASPubMedPubMed Central Google Scholar
McIntosh GG, Anderson JJ, Milton I, Steward M, Parr AH, Thomas MD et al. (1995). Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene11: 885–891. CASPubMed Google Scholar
Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet5: 691–701. ArticleCASPubMed Google Scholar
Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . (1993). ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA90: 8977–8981. ArticleCASPubMedPubMed Central Google Scholar
Nass SJ, Dickson RB . (1997). Defining a role for c-Myc in breast tumorigenesis. Breast Cancer Res Treat44: 1–22. ArticleCASPubMed Google Scholar
Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Danø K . (1997). Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest77: 345–355. CASPubMed Google Scholar
Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR et al. (2001). Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res61: 7091–7100. CASPubMed Google Scholar
Nusse R, Varmus HE . (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell31: 99–109. ArticleCASPubMed Google Scholar
Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H . (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature307: 131–136. ArticleCASPubMed Google Scholar
Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P et al. (1995). Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA92: 2730–2734. ArticleCASPubMedPubMed Central Google Scholar
Peters G, Brookes S, Smith R, Dickson C . (1983). Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell33: 369–377. ArticleCASPubMed Google Scholar
Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC . (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature407: 535–538. ArticleCASPubMed Google Scholar
Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ et al. (2003). Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene22: 1880–1891. ArticleCASPubMed Google Scholar
Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA96: 5522–5527. ArticleCASPubMedPubMed Central Google Scholar
Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell98: 137–146. ArticleCASPubMedPubMed Central Google Scholar
Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y . (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene21: 5861–5867. ArticleCASPubMed Google Scholar
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al. (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature407: 530–535. ArticleCASPubMed Google Scholar
Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T et al. (2005). Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem280: 19185–19195. ArticleCASPubMed Google Scholar
Tetsu O, McCormick F . (1999). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature39: 422–426. Article Google Scholar
Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell55: 619–625. ArticleCASPubMed Google Scholar
Turashvili G, Bouchal J, Burkadze G, Kolar Z . (2006). Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology73: 213–223. ArticleCASPubMed Google Scholar
Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F et al. (2001). WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene20: 5810–5817. ArticleCASPubMed Google Scholar
Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature369: 669–671. ArticleCASPubMed Google Scholar
Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D et al. (2000). arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature407: 527–530. ArticleCASPubMed Google Scholar
Wolf C, Rouyer N, Lutz Y, Adida C, Loriot M, Bellocq JP et al. (1993). Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA90: 1843–1847. ArticleCASPubMedPubMed Central Google Scholar
Wu B, Crampton SP, Hughes CC . (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity26: 227–239. ArticleCASPubMedPubMed Central Google Scholar
Yan D, Wiesman M, Rohan M, Chan V, Jefferson AB, Guo L et al. (2001). Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/β-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA98: 14973–14978. ArticleCASPubMedPubMed Central Google Scholar