WNT and β-catenin signalling: diseases and therapies (original) (raw)
Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol.14, 59–88 (1998). ArticleCASPubMed Google Scholar
Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev.11, 547–553 (2001). CASPubMed Google Scholar
Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell5, 367–377 (2003). CASPubMed Google Scholar
Tolwinski, N. S. & Wieschaus, E. Rethinking WNT signaling. Trends Genet.20, 177–181 (2004). CASPubMed Google Scholar
He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development131, 1663–1677 (2004). CASPubMed Google Scholar
Tan, C. et al. Inhibition of integrin linked kinase (ILK) suppresses β-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC−/− human colon carcinoma cells. Oncogene20, 133–140 (2001). CASPubMed Google Scholar
Levina, E., Oren, M. & Ben-Ze'ev, A. Downregulation of β-catenin by p53 involves changes in the rate of β-catenin phosphorylation and Axin dynamics. Oncogene23, 4444–4453 (2004). CASPubMed Google Scholar
Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci.116, 1175–1186 (2003). CASPubMed Google Scholar
Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science296, 1644–1646 (2002). CASPubMed Google Scholar
Westfall, T. A. et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol.162, 889–898 (2003). CASPubMedPubMed Central Google Scholar
Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol.162, 899–908 (2003). CASPubMedPubMed Central Google Scholar
Niemann, S. et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet.74, 558–563 (2004). CASPubMedPubMed Central Google Scholar
Jordan, B. K., Shen, J. H., Olaso, R., Ingraham, H. A. & Vilain, E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/β-catenin synergy. Proc. Natl Acad. Sci. USA100, 10866–10871 (2003). CASPubMedPubMed Central Google Scholar
Perantoni, A. O. Renal development: perspectives on a Wnt-dependent process. Semin. Cell Dev. Biol.14, 201–208 (2003). CASPubMed Google Scholar
Terada, Y. et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol.14, 1223–1233 (2003). CASPubMed Google Scholar
Surendran, K. & Simon, T. C. CNP gene expression is activated by Wnt signaling and correlates with Wnt4 expression during renal injury. Am. J. Physiol. Renal Physiol.284, F653–F562 (2003). CASPubMed Google Scholar
Rodova, M., Islam, M. R., Maser, R. L. & Calvet, J. P. The polycystic kidney disease-1 promoter is a target of the β-catenin/T-cell factor pathway. J. Biol. Chem.277, 29577–29583 (2002). CASPubMed Google Scholar
Olson, D. J. & Gibo, D. M. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res.241, 134–141 (1998). CASPubMed Google Scholar
Olson, D. J., Gibo, D. M., Saggers, G., Debinski, W. & Kumar, R. Reversion of uroepithelial cell tumorigenesis by the ectopic expression of human wnt-5a. Cell Growth Differ.8, 417–423 (1997). CASPubMed Google Scholar
Liang, H. et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell4, 349–360 (2003). Strong evidence that WNT/calcium signalling is a tumour-suppressor pathway. CASPubMed Google Scholar
Weeraratna, A. T. et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell1, 279–288 (2002). Solid evidence that WNT/calcium signalling is involved in metastasis. CASPubMed Google Scholar
Ouko, L., Ziegler, T. R., Gu, L. H., Eisenberg, L. M. & Yang, V. W. Wnt11 signaling promotes proliferation, transformation and migration of IEC6 intestinal epithelial cells. J. Biol. Chem.279, 26707–26715 (2004). CASPubMed Google Scholar
Miyaoka, T., Seno, H. & Ishino, H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr. Res.38, 1–6 (1999). CASPubMed Google Scholar
Katsu, T. et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci. Lett.353, 53–56 (2003). CASPubMed Google Scholar
Kozlovsky, N., Belmaker, R. H. & Agam, G. GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur. Neuropsychopharmacol.12, 13–25 (2002). CASPubMed Google Scholar
Lijam, N. et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell90, 895–905 (1997). CASPubMed Google Scholar
Loughlin, J. et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc. Natl Acad. Sci. USA101, 9757–9762 (2004). CASPubMedPubMed Central Google Scholar
Easwaran, V. et al. β-catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res.63, 3145–3153 (2003). CASPubMed Google Scholar
Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Genet.32, 326–330 (2002). CASPubMed Google Scholar
Toomes, C. et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet.74, 721–730 (2004). CASPubMedPubMed Central Google Scholar
Kondo, H., Hayashi, H., Oshima, K., Tahira, T. & Hayashi, K. Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br. J. Ophthalmol.87, 1291–1295 (2003). CASPubMedPubMed Central Google Scholar
Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell116, 883–895 (2004). CASPubMed Google Scholar
Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol.6, 52–58 (2004). CASPubMed Google Scholar
Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature423, 349–355 (2003). CASPubMed Google Scholar
Johnson, M. L. et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am. J. Hum. Genet.60, 1326–1332 (1997). CASPubMedPubMed Central Google Scholar
Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002). CASPubMed Google Scholar
Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002). CASPubMed Google Scholar
Zhang, Y. et al. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell Biol.24, 4677–4684 (2004). CASPubMedPubMed Central Google Scholar
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107, 513–523 (2001). Evidence of LRP5 involvement in bone and eye formation. CASPubMed Google Scholar
Bodine, P. V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol.18, 1222–1237 (2004). CASPubMed Google Scholar
Kahler, R. A. & Westendorf, J. J. Lymphoid enhancer factor-1 and β-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J. Biol. Chem.278, 11937–11944 (2003). CASPubMed Google Scholar
Morin, P. J. & Weeraratna, A. T. Wnt signaling in human cancer. Cancer Treat. Res.115, 169–187 (2003). CASPubMed Google Scholar
Taketo, M. M. Shutting down Wnt signal-activated cancer. Nature Genet.36, 320–322 (2004). CASPubMed Google Scholar
Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta1653, 1–24 (2003). CASPubMed Google Scholar
van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). CASPubMed Google Scholar
Uematsu, K. et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene22, 7218–7221 (2003). CASPubMed Google Scholar
Kim, J. S., Crooks, H., Foxworth, A. & Waldman, T. Proof-of-principle: oncogenic β-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol. Cancer Ther.1, 1355–1359 (2002). CASPubMed Google Scholar
Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev.17, 488–501 (2003). CASPubMedPubMed Central Google Scholar
Derksen, P. W. et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl Acad. Sci. USA101, 6122–6127 (2004). CASPubMedPubMed Central Google Scholar
Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet.36, 417–422 (2004). CASPubMed Google Scholar
Kratochwil, K., Galceran, J., Tontsch, S., Roth, W. & Grosschedl, R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes Dev.16, 3173–3185 (2002). CASPubMedPubMed Central Google Scholar
Lammi, L. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet.74, 1043–1050 (2004). CASPubMedPubMed Central Google Scholar
Mak, B. C., Takemaru, K., Kenerson, H. L., Moon, R. T. & Yeung, R. S. The tuberin-hamartin complex negatively regulates β-catenin signaling activity. J. Biol. Chem.278, 5947–5951 (2003). CASPubMed Google Scholar
Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). CASPubMed Google Scholar
Chang, C. H. et al. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech. Dev.121, 157–171 (2004). CASPubMedPubMed Central Google Scholar
Zhu, A. J. & Watt, F. M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development126, 2285–2298 (1999). CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999). CASPubMed Google Scholar
Guo, N., Hawkins, C. & Nathans, J. From the cover: Frizzled6 controls hair patterning in mice. Proc. Natl Acad. Sci. USA101, 9277–9281 (2004). CASPubMedPubMed Central Google Scholar
Cheon, S. S. et al. β-catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl Acad. Sci. USA99, 6973–6978 (2002). CASPubMedPubMed Central Google Scholar
Cheon, S. S., Nadesan, P., Poon, R. & Alman, B. A. Growth factors regulate β-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp. Cell Res.293, 267–274 (2004). CASPubMed Google Scholar
Varallo, V. M. et al. β-catenin expression in Dupuytren's disease: potential role for cell-matrix interactions in modulating β-catenin levels in vivo and in vitro. Oncogene22, 3680–3684 (2003). CASPubMed Google Scholar
Mucenski, M. L. et al. β-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J. Biol. Chem.278, 40231–40238 (2003). CASPubMed Google Scholar
Chilosi, M. et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am. J. Pathol.162, 1495–1502 (2003). CASPubMedPubMed Central Google Scholar
Okubo, T. & Hogan, B. L. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J. Biol.3, 11 (2004). PubMedPubMed Central Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). CASPubMed Google Scholar
Terry, A. V. & Buccafusco, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther.306, 821–827 (2003). CASPubMed Google Scholar
Zhang, Z. et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature395, 698–702 (1998). CASPubMed Google Scholar
Nishimura, M. et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin, a component of the presenilin protein complex. Nature Med.5, 164–169 (1999). CASPubMed Google Scholar
Takashima, A. et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc. Natl Acad. Sci. USA95, 9637–9641 (1998). CASPubMedPubMed Central Google Scholar
De Ferrari, G. V. & Inestrosa, N. C. Wnt signaling function in Alzheimer's disease. Brain Res. Brain Res. Rev.33, 1–12 (2000). CASPubMed Google Scholar
Kang, D. E. et al. Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis. Cell110, 751–762 (2002). CASPubMed Google Scholar
Mudher, A. & Lovestone, S. Alzheimer's disease — do tauists and baptists finally shake hands? Trends Neurosci.25, 22–26 (2002). CASPubMed Google Scholar
Caricasole, A. et al. The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer's disease? Trends Pharmacol. Sci.24, 233–238 (2003). CASPubMed Google Scholar
Mudher, A. et al. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J. Neurosci.21, 4987–4995 (2001). CASPubMedPubMed Central Google Scholar
Alvarez, G. et al. Lithium protects cultured neurons against β-amyloid-induced neurodegeneration. FEBS Lett.453, 260–264 (1999). CASPubMed Google Scholar
De Ferrari, G. V. et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol. Psychiatry8, 195–208 (2003). Evidence that activating WNT/β-catenin signalling is neuroprotectivein vitroandin vivo. CASPubMed Google Scholar
Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature423, 435–439 (2003). CASPubMed Google Scholar
Sun, X. et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci. Lett.321, 61–64 (2002). CASPubMed Google Scholar
Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev.17, 1937–1956 (2003). CASPubMed Google Scholar
Nakamura, T., Sano, M., Songyang, Z. & Schneider, M. D. A Wnt- and β-catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl Acad. Sci. USA100, 5834–5839 (2003). CASPubMedPubMed Central Google Scholar
Pandur, P., Lasche, M., Eisenberg, L. M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature418, 636–641 (2002). CASPubMed Google Scholar
van Gijn, M. E., Daemen, M. J., Smits, J. F. & Blankesteijn, W. M. The wnt-frizzled cascade in cardiovascular disease. Cardiovasc. Res.55, 16–24 (2002). CASPubMed Google Scholar
Barandon, L. et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation108, 2282–2289 (2003). CASPubMed Google Scholar
Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell5, 91–102 (2004). CASPubMed Google Scholar
Emami, K. H. et al. A small molecule inhibitor of β-catenin/CBP transcription. Proc. Natl Acad. Sci. USA (in the press). New lead anti-cancer compound that blocks the WNT/β-catenin pathway.
He, B. et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia6, 7–14 (2004). CASPubMedPubMed Central Google Scholar
You, L. et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 21 June 2004 [epub ahead of print].
Chakrabarty, S., Radjendirane, V., Appelman, H. & Varani, J. Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Res.63, 67–71 (2003). CASPubMed Google Scholar
Boon, E. M. et al. Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br. J. Cancer90, 224–229 (2004). CASPubMedPubMed Central Google Scholar
Dihlmann, S., Klein, S. & Doeberitz, M. K. Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol. Cancer Ther.2, 509–516 (2003). CASPubMed Google Scholar
Nath, N., Kashfi, K., Chen, J. & Rigas, B. Nitric oxide-donating aspirin inhibits β-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear β-catenin-TCF association. Proc. Natl Acad. Sci. USA100, 12584–12589 (2003). CASPubMedPubMed Central Google Scholar
Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA101, 3118–3123 (2004). CASPubMedPubMed Central Google Scholar
Thompson, W. J. et al. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res.60, 3338–3342 (2000). CASPubMed Google Scholar
Zhou, L. et al. Tyrosine kinase inhibitor STI-571/Gleevec downregulates the β-catenin signaling activity. Cancer Lett.193, 161–170 (2003). CASPubMedPubMed Central Google Scholar
Suksaweang, S. et al. Morphogenesis of chicken liver: identification of localized growth zones and the role of β-catenin/Wnt in size regulation. Dev. Biol.266, 109–122 (2004). CASPubMedPubMed Central Google Scholar
Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297, 365–369 (2002). CASPubMed Google Scholar
Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science289, 950–953 (2000). CASPubMed Google Scholar
Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nature Genet.32, 594–605 (2002). CASPubMed Google Scholar
Kubo, F., Takeichi, M. & Nakagawa, S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development130, 587–598 (2003). CASPubMed Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med.10, 55–63 (2004). CASPubMed Google Scholar
Eaves, C. J. Manipulating hematopoietic stem cell amplification with Wnt. Nature Immunol.4, 511–512 (2003). CAS Google Scholar
Lee, H. Y. et al. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science303, 1020–1023 (2004). CASPubMed Google Scholar
Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101, 4158–4163 (2004). CASPubMedPubMed Central Google Scholar
Polesskaya, A., Seale, P. & Rudnicki, M. A. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell113, 841–852 (2003). CASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). CASPubMed Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). Purification of WNTs and demonstration of their potential effects on stem cells. CASPubMed Google Scholar
Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl Acad. Sci. USA100, 3422–3427 (2003). CASPubMedPubMed Central Google Scholar
Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA100, 12747–12752 (2003). CASPubMedPubMed Central Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). CASPubMed Google Scholar
Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl Acad. Sci. USA101, 266–271 (2004). CASPubMed Google Scholar
Kim, J. H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature418, 50–56 (2002). CASPubMed Google Scholar
Hori, Y. et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl Acad. Sci. USA99, 16105–16110 (2002). CASPubMedPubMed Central Google Scholar