E2F1-dependent oncogenic addiction of melanoma cells to MDM2 (original) (raw)
Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK . (2007). Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene26: 3473–3481. ArticleCAS Google Scholar
Avery-Kiejda KA, Zhang XD, Adams LJ, Scott RJ, Vojtesek B, Lane DP et al. (2008). Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res14: 1659–1668. ArticleCAS Google Scholar
Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L . (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol21: 2144–2153. ArticleCAS Google Scholar
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature434: 864–870. ArticleCAS Google Scholar
Bennett DC . (2008). How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res21: 27–38. ArticleCAS Google Scholar
Campanero MR, Flemington EK . (1997). Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci USA94: 2221–2226. ArticleCAS Google Scholar
Castresana JS, Rubio MP, Vazquez JJ, Idoate M, Sober AJ, Seizinger BR et al. (1993). Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer55: 562–565. ArticleCAS Google Scholar
Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol8: 1053–1063. ArticleCAS Google Scholar
Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P, Opipari Jr AW et al. (2005). Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res65: 6294–6304. ArticleCAS Google Scholar
Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S et al. (2009). MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem284: 13987–14000. ArticleCAS Google Scholar
Gray-Schopfer V, Wellbrock C, Marais R . (2007). Melanoma biology and new targeted therapy. Nature445: 851–857. ArticleCAS Google Scholar
Ha L, Ichikawa T, Anver M, Dickins R, Lowe S, Sharpless NE et al. (2007). ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA104: 10968–10973. ArticleCAS Google Scholar
Hoek KS . (2007). DNA microarray analyses of melanoma gene expression: a decade in the mines. Pigment Cell Res20: 466–484. ArticleCAS Google Scholar
Hofmann F, Martelli F, Livingston DM, Wang Z . (1996). The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev10: 2949–2959. ArticleCAS Google Scholar
Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J . (2006). MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem281: 33030–33035. ArticleCAS Google Scholar
Huang B, Deo D, Xia M, Vassilev LT . (2009). Pharmacologic p53 activation blocks cell cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer Res7: 1497–1509. ArticleCAS Google Scholar
Jemal A, Siegel R, Xu J, Ward E . (2010). Cancer statistics, 2010. CA Cancer J Clin60: 277–300. Article Google Scholar
Kass EM, Poyurovsky MV, Zhu Y, Prives C . (2009). Mdm2 and PCAF increase Chk2 ubiquitination and degradation independently of their intrinsic E3 ligase activities. Cell Cycle8: 430–437. ArticleCAS Google Scholar
Korotchkina LG, Demidenko ZN, Gudkov AV, Blagosklonny MV . (2009). Cellular quiescence caused by the Mdm2 inhibitor nutlin-3A. Cell Cycle8: 3777–3781. ArticleCAS Google Scholar
Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E et al. (2008). Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res68: 3193–3203. ArticleCAS Google Scholar
Long J, Parkin B, Ouillette P, Bixby D, Shedden K, Erba H et al. (2010). Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood116: 71–80. ArticleCAS Google Scholar
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436: 720–724. ArticleCAS Google Scholar
Moran DM, Maki CG . (2010). Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol Cancer Ther9: 895–905. ArticleCAS Google Scholar
Murga M, Bunting S, Montana MF, Soria R, Mulero F, Canamero M et al. (2009). A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet41: 891–898. ArticleCAS Google Scholar
Nikiforov MA, Riblett M, Tang WH, Gratchouck V, Zhuang D, Fernandez Y et al. (2007). Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci USA104: 19488–19493. ArticleCAS Google Scholar
Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol15: 249–254. ArticleCAS Google Scholar
Polager S, Ginsberg D . (2009). p53 and E2f: partners in life and death. Nat Rev Cancer9: 738–748. ArticleCAS Google Scholar
Polsky D, Cordon-Cardo C . (2003). Oncogenes in melanoma. Oncogene22: 3087–3091. ArticleCAS Google Scholar
Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW . (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene23: 2934–2949. ArticleCAS Google Scholar
Prieur A, Peeper DS . (2008). Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol20: 150–155. ArticleCAS Google Scholar
Ryan KM, Phillips AC, Vousden KH . (2001). Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol13: 332–337. ArticleCAS Google Scholar
Satyamoorthy K, Chehab NH, Waterman MJ, Lien MC, El-Deiry WS, Herlyn M et al. (2000). Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells. Cell Growth Differ11: 467–474. CASPubMed Google Scholar
Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R et al. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell20: 699–708. ArticleCAS Google Scholar
Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA105: 3933–3938. ArticleCAS Google Scholar
Shangary S, Wang S . (2009). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol49: 223–241. ArticleCAS Google Scholar
Shen H, Moran DM, Maki CG . (2008). Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res68: 8260–8268. ArticleCAS Google Scholar
Smalley KS, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS et al. (2007). An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res67: 209–217. ArticleCAS Google Scholar
Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature409: 207–211. ArticleCAS Google Scholar
Soengas MS, Lowe SW . (2003). Apoptosis and melanoma chemoresistance. Oncogene22: 3138–3151. ArticleCAS Google Scholar
Terzian T, Torchia EC, Dai D, Robinson SE, Murao K, Stiegmann RA et al. (2010). p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res23: 781–794. ArticleCAS Google Scholar
Vassilev LT . (2007). MDM2 inhibitors for cancer therapy. Trends Mol Med13: 23–31. ArticleCAS Google Scholar
Vazquez A, Bond EE, Levine AJ, Bond GL . (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov7: 979–987. ArticleCAS Google Scholar
Verhaegen M, Bauer JA, Martin de la Vega C, Wang G, Wolter KG, Brenner JC et al. (2006). A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res66: 11348–11359. ArticleCAS Google Scholar
Verma R, Rigatti MJ, Belinsky GS, Godman CA, Giardina C . (2010). DNA damage response to the Mdm2 inhibitor nutlin-3. Biochem Pharmacol79: 565–574. ArticleCAS Google Scholar
Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell137: 413–431. ArticleCAS Google Scholar
Wade M, Wang YV, Wahl GM . (2010). The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol20: 299–309. ArticleCAS Google Scholar
Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature375: 694–698. ArticleCAS Google Scholar
Yang G, Zhang G, Pittelkow MR, Ramoni M, Tsao H . (2006). Expression profiling of UVB response in melanocytes identifies a set of p53-target genes. J Invest Dermatol126: 2490–2506. ArticleCAS Google Scholar
Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R . (2004). MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem279: 16000–16006. ArticleCAS Google Scholar
Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. (2009). Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell35: 316–326. ArticleCAS Google Scholar