Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy (original) (raw)
Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737. ArticleCASPubMed Google Scholar
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828. CASPubMed Google Scholar
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988. ArticleCASPubMedPubMed Central Google Scholar
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037. ArticleCASPubMed Google Scholar
Maitland NJ, Collins AT . Prostate cancer stem cells: a new target for therapy. J Clin Oncol 2008; 26: 2862–2870. ArticlePubMed Google Scholar
Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667. ArticleCASPubMed Google Scholar
Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol 2009; 7: e1000121. ArticlePubMedPubMed CentralCAS Google Scholar
Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059–3087. ArticleCASPubMed Google Scholar
Micchelli CA, The I, Selva E, Mogila V, Perrimon N . Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 2002; 129: 843–851. CASPubMed Google Scholar
Svärd J, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergström Å et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell 2006; 10: 187–197. ArticlePubMedCAS Google Scholar
Ruiz iAltaba A, Sánchez P, Dahmane N . Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002; 2: 361–372. ArticleCAS Google Scholar
Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14: 357–360. ArticleCASPubMed Google Scholar
Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851. ArticleCASPubMed Google Scholar
Johnson RL, Rothman AL, Xie J, Goodrich L V, Bare JW, Bonifas JM et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272: 1668–1671. ArticleCASPubMed Google Scholar
Kiesslich T, Berr F, Alinger B, Kemmerling R, Pichler M, Ocker M et al. Current status of therapeutic targeting of developmental signalling pathways in oncology. Curr Pharm Biotechnol 2012; 13: 2184–2220. ArticlePubMed Google Scholar
Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425: 846–851. ArticleCASPubMed Google Scholar
Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422: 313–317. ArticleCASPubMed Google Scholar
Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i, Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172. ArticleCASPubMed Google Scholar
Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14: 238–249. ArticleCASPubMed Google Scholar
Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007; 67: 2187–2196. ArticleCASPubMedPubMed Central Google Scholar
Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053. ArticleCASPubMedPubMed Central Google Scholar
Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776–779. ArticleCASPubMedPubMed Central Google Scholar
Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008; 27: 2616–2627. ArticleCASPubMedPubMed Central Google Scholar
Liao X, Siu MKY, Au CWH, Wong ESY, Chan HY, Ip PPC et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30: 131–140. ArticleCASPubMed Google Scholar
Sheng T, Li C, Zhang X, Chi S, He N, Chen K et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 2004; 3: 29. ArticlePubMedPubMed CentralCAS Google Scholar
Fan L, Pepicelli C V, Dibble CC, Catbagan W, Zarycki JL, Laciak R et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004; 145: 3961–3970. ArticleCASPubMed Google Scholar
Sanchez P, Hernández AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 2004; 101: 12561–12566. ArticleCASPubMedPubMed Central Google Scholar
Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071. ArticleCASPubMedPubMed Central Google Scholar
Artavanis-Tsakonas S . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776. ArticleCASPubMed Google Scholar
Roy M, Pear WS, Aster JC . The multifaceted role of Notch in cancer. Curr Opin Genet Dev 2007; 17: 52–59. ArticleCASPubMed Google Scholar
Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65: 8530–8537. ArticleCASPubMed Google Scholar
Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE et al. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007; 20: 685–693. ArticleCASPubMed Google Scholar
Farnie G, Clarke RB . Mammary stem cells and breast cancer–role of Notch signalling. Stem Cell Rev 2007; 3: 169–175. ArticleCASPubMed Google Scholar
Sansone P, Storci G, Giovannini C, Pandolfi S, Pianetti S, Taffurelli M et al. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 2007; 25: 807–815. ArticleCASPubMed Google Scholar
Gustafsson M V, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9: 617–628. ArticleCASPubMed Google Scholar
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661. ArticleCASPubMed Google Scholar
Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271. ArticleCASPubMed Google Scholar
Wang YH, Li F, Luo B, Wang XH, Sun HC, Liu S et al. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 2009; 56: 371–378. ArticleCASPubMed Google Scholar
Castellanos JA, Merchant NB, Nagathihalli NS . Emerging targets in pancreatic cancer: and cancer stem cells. Onco Targets Ther 2013; 6: 1261–1267. PubMedPubMed Central Google Scholar
Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009; 69: 2400–2407. ArticleCASPubMedPubMed Central Google Scholar
Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C et al. Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 2011; 15: 817–828. ArticleCASPubMedPubMed Central Google Scholar
Gordon MD, Nusse R . Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006; 281: 22429–22433. ArticleCASPubMed Google Scholar
Bilic J, Huang Y-L, Davidson G, Zimmermann T, Cruciat C-M, Bienz M et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007; 316: 1619–1622. ArticleCASPubMed Google Scholar
Mosimann C, Hausmann G, Basler K . Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 2009; 10: 276–286. ArticleCASPubMed Google Scholar
Willert K, Jones KA . Wnt signaling: is the party in the nucleus? Genes Dev 2006; 20: 1394–1404. ArticleCASPubMed Google Scholar
Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S et al. Wnt/Wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 2002; 109: 47–60. ArticleCASPubMed Google Scholar
Jessen S, Gu B, Dai X . Pygopus and the Wnt signaling pathway: a diverse set of connections. Bioessays 2008; 30: 448–456. ArticleCASPubMed Google Scholar
Fearon ER, Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767. ArticleCASPubMed Google Scholar
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790. ArticleCASPubMed Google Scholar
Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T et al. Activation of the ??-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 1998; 58: 1021–1026. CASPubMed Google Scholar
Sparks AB, Morin PJ, Vogelstein B, Kinzler KW . Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58: 1130–1134. CASPubMed Google Scholar
Mirabelli-Primdahl L, Gryfe R, Kim H, Millar A, Luceri C, Dale D et al. ??-Catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res 1999; 59: 3346–3351. CASPubMed Google Scholar
Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA . Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 1999; 155: 703–710. ArticleCASPubMedPubMed Central Google Scholar
Palacios J, Gamallo C . Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 1998; 58: 1344–1347. CASPubMed Google Scholar
Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suárez A, Armas A . beta-catenin expression pattern in stage I and II ovarian carcinomas : relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol 1999; 155: 527–536. ArticleCASPubMedPubMed Central Google Scholar
Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991; 66: 589–600. ArticleCASPubMed Google Scholar
Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB et al. Identification of FAP locus genes from chromosome 5q21. Science 1991; 253: 661–665. ArticleCASPubMed Google Scholar
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275: 1784–1787. ArticleCASPubMed Google Scholar
Pinto D, Gregorieff A, Begthel H, Clevers H . Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003; 17: 1709–1713. ArticleCASPubMedPubMed Central Google Scholar
Van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L et al. Development of several organs that require inductive epithelial- mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994; 8: 2691–2703. ArticleCASPubMed Google Scholar
Andrade AC, Nilsson O, Barnes KM, Baron J . Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 2007; 40: 1361–1369. ArticleCASPubMedPubMed Central Google Scholar
Eaves CJ, Humphries RK . Acute myeloid leukemia and the Wnt pathway. N Engl J Med 2010; 362: 2326–2327. ArticleCASPubMed Google Scholar
Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A et al. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 2008; 73: 59–66. ArticleCASPubMed Google Scholar
Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476. ArticleCASPubMed Google Scholar
Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008; 452: 650–653. ArticleCASPubMed Google Scholar
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414. ArticleCASPubMed Google Scholar
Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001; 98: 10356–10361. ArticleCASPubMedPubMed Central Google Scholar
Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R et al. The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 2001; 159: 1613–1617. ArticleCASPubMedPubMed Central Google Scholar
Kirchner T, Brabletz T . Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 2000; 157: 1113–1121. ArticleCASPubMedPubMed Central Google Scholar
Gil J, Bernard D, Peters G . Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol 2005; 24: 117–125. ArticleCASPubMed Google Scholar
Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168. ArticleCASPubMed Google Scholar
Alkema MJ, Wiegant J, Raap AK, Berns A, van Lohuizen M . Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 1993; 2: 1597–1603. ArticleCASPubMed Google Scholar
Itahana K, Zou Y, Itahana Y, Martinez J-L, Beausejour C, Jacobs JJL et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 2003; 23: 389–401. ArticleCASPubMedPubMed Central Google Scholar
Van Der Lugt NMT, Domen J, Linders K, Van Roon M, Robanus-Maandag E, Te Riele H et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 1994; 8: 757–769. ArticleCASPubMed Google Scholar
Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991; 65: 753–763. ArticleCASPubMed Google Scholar
Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 2005; 82: 42–47. ArticleCASPubMed Google Scholar
Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 2001; 84: 1372–1376. ArticleCASPubMedPubMed Central Google Scholar
Zhang F, Sui L, Xin T . Correlations of Bmi-1 expression and telomerase activity in ovarian cancer tissues. Exp Oncol 2008; 30: 70–74. CASPubMed Google Scholar
Dimri GP, Martinez JL, Jacobs JJL, Keblusek P, Itahana K, Van Lohuizen M et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 2002; 62: 4736–4745. CASPubMed Google Scholar
Cui H, Hu B, Li T, Ma J, Alam G, Gunning WT et al. Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol 2007; 170: 1370–1378. ArticleCASPubMedPubMed Central Google Scholar
Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009; 106: 16281–16286. ArticleCASPubMedPubMed Central Google Scholar
Yin T, Wei H, Gou S, Shi P, Yang Z, Zhao G et al. Cancer stem-like cells enriched in Panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci 2011; 12: 1595–1604. ArticleCASPubMedPubMed Central Google Scholar
Raaphorst FM . Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum Mol Genet 2005; 14: R93–R100. ArticleCASPubMed Google Scholar
Zhang S, Balch C, Chan MW, Lai H-C, Matei D, Schilder JM et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68: 4311–4320. ArticleCASPubMedPubMed Central Google Scholar
Van Leenders GJLH, Dukers D, Hessels D, van den Kieboom SWM, Hulsbergen CA, Witjes JA et al. Polycombgroup oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52: 455–463. ArticleCASPubMed Google Scholar
Glinsky G V, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521. ArticleCASPubMedPubMed Central Google Scholar
Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L et al. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 2007; 355: 855–859. ArticleCASPubMed Google Scholar
Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768. ArticleCASPubMed Google Scholar
Lobo NA, Shimono Y, Qian D, Clarke MF . The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675–699. ArticleCASPubMed Google Scholar
Sánchez-García I, Vicente-Dueñas C, Cobaleda C . The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 2007; 29: 1269–1280. ArticlePubMedCAS Google Scholar
Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000; 406: 1005–1009. ArticleCASPubMed Google Scholar
Goodrich L V, Scott MP . Hedgehog and patched in neural development and disease. Neuron 1998; 21: 1243–1257. ArticleCASPubMed Google Scholar
Beachy PA, Cooper MK, Young KE, Von Kessler DP, Park WJ, Hall TMT et al. Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb Symp Quant Biol 1997; 62: 191–204. ArticleCASPubMed Google Scholar
Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2533. ArticleCASPubMedPubMed Central Google Scholar
Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009; 361: 1164–1172. ArticleCASPubMed Google Scholar
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457–1461. ArticleCASPubMedPubMed Central Google Scholar
Skvara H, Kalthoff F, Meingassner JG, Wolff-Winiski B, Aschauer H, Kelleher JF et al. Topical treatment of Basal cell carcinomas in nevoid Basal cell carcinoma syndrome with a smoothened inhibitor. J Invest Dermatol 2011; 131: 1735–1744. ArticleCASPubMed Google Scholar
Stuetz A, de Rie MA, Skvara H, Mickel L, Schuster C, Stary G et al. FC24 LDE225, a specific smoothened inhibitor, for the topical treatment of nevoid basal cell carcinoma syndrome (Gorlin's syndrome). Melanoma Res 2010; 20: e40. Article Google Scholar
Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, Duffner JL et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 2009; 5: 154–156. ArticleCASPubMedPubMed Central Google Scholar
Hyman JM, Firestone AJ, Heine VM, Zhao Y, Ocasio CA, Han K et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 2009; 106: 14132–14137. ArticleCASPubMedPubMed Central Google Scholar
Lauth M, Bergström A, Shimokawa T, Toftgård R . Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 2007; 104: 8455–8460. ArticleCASPubMedPubMed Central Google Scholar
Ślusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS et al. Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 2010; 70: 3382–3390. ArticlePubMedCAS Google Scholar
Elamin MH, Shinwari Z, Hendrayani SF, Al-Hindi H, Al-Shail E, Khafaga Y et al. Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 2010; 49: 302–314. CASPubMed Google Scholar
Tang GQ, Yan TQ, Guo W, Ren TT, Peng CL, Zhao H et al. (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 2010; 136: 1179–1185. ArticleCASPubMed Google Scholar
Fouladi M, Stewart CF, Olson J, Wagner LM, Onar-Thomas A, Kocak M et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 2011; 29: 3529–3534. ArticleCASPubMedPubMed Central Google Scholar
Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 2011; 105: 796–806. ArticleCASPubMedPubMed Central Google Scholar
Deangelo DJ, Stone RM, Silverman LB, Stock W, Attar EC, Fearen I et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 2006; 24: 6585. Google Scholar
Wei P, Walls M, Qiu M, Ding R, Denlinger RH, Wong A et al. Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 2010; 9: 1618–1628. ArticleCASPubMed Google Scholar
Oncomed Pharmaceuticals. A Phase 1 Dose Escalation Study of OMP-21M18 in Subjects With Solid Tumors. ClinicalTrials.gov 2012, available at https://clinicaltrials.gov/show/NCT00744562.
Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004; 101: 15949–15954. ArticleCASPubMedPubMed Central Google Scholar
Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 2004; 18: 2474–2478. ArticleCASPubMedPubMed Central Google Scholar
Ridgway J, Zhang G, Wu Y, Stawicki S, Liang W-C, Chanthery Y et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006; 444: 1083–1087. ArticleCASPubMed Google Scholar
Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188. ArticleCASPubMedPubMed Central Google Scholar
Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M et al. A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 2008; 68: 4727–4735. ArticleCASPubMedPubMed Central Google Scholar
Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH . Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 2006; 5: 483–493. ArticleCASPubMed Google Scholar
Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G et al. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 2011; 19: 188–195. ArticleCASPubMed Google Scholar
Kawahara T, Kawaguchi-Ihara N, Okuhashi Y, Itoh M, Nara N, Tohda S . Cyclopamine and quercetin suppress the growth of leukemia and lymphoma cells. Anticancer Res 2009; 29: 4629–4632. CASPubMed Google Scholar
Nagayama S, Fukukawa C, Katagiri T, Okamoto T, Aoyama T, Oyaizu N et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene 2005; 24: 6201–6212. ArticleCASPubMed Google Scholar
He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 2005; 24: 3054–3058. ArticleCASPubMed Google Scholar
You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 2004; 64: 5385–5389. ArticleCASPubMed Google Scholar
Fujii N, You L, Xu Z, Uematsu K, Shan J, He B et al. An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res 2007; 67: 573–579. ArticleCASPubMed Google Scholar
Shan J, Shi D-L, Wang J, Zheng J . Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 2005; 44: 15495–15503. ArticleCASPubMed Google Scholar
Takahashi-Yanaga F, Kahn M . Targeting Wnt signaling: can we safely eradicate cancer stem cells? Cancer Res 2010; 16: 3153–3162. CAS Google Scholar
Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 2004; 101: 12682–12687. ArticleCASPubMedPubMed Central Google Scholar
Bommi P V, Dimri M, Sahasrabuddhe AA, Khandekar JD, Dimri GP . The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. Cell Cycle 2010; 9: 2663–2673. ArticleCASPubMedPubMed Central Google Scholar
Wu J, Hu D, Yang G, Zhou J, Yang C, Gao Y et al. Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J Cell Biochem 2011; 112: 1938–1948. ArticleCASPubMed Google Scholar
Veeranarayanan S, Poulose AC, Mohamed MS, Varghese SH, Nagaoka Y, Yoshida Y et al. Synergistic targeting of cancer and associated angiogenesis using triple-targeted dual-drug silica nanoformulations for theragnostics. Small 2012; 8: 3476–3489. ArticleCASPubMed Google Scholar
Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS . Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 2013; 91: 22–32. ArticleCASPubMed Google Scholar
Raveendran S, Chauhan N, Palaninathan V, Nagaoka Y, Yoshida Y, Maekawa T et al. Extremophilic polysaccharide for biosynthesis and passivation of gold nanoparticles and photothermal ablation of cancer cells. Part Part Syst Charact 2015; 32: 54–64. ArticleCAS Google Scholar
Sivakumar B, Aswathy RG, Nagaoka Y, Iwai S, Venugopal K, Kato K et al. Aptamer conjugated theragnostic multifunctional magnetic nanoparticles as a nanoplatform for pancreatic cancer therapy. RSC Adv 2013; 3: 20579. ArticleCAS Google Scholar
Raveendran S, Palaninathan V, Nagaoka Y, Fukuda T, Iwai S, Higashi T et al. Extremophilic polysaccharide nanoparticles for cancer nanotherapy and evaluation of antioxidant properties. Int J Biol Macromol 2015; 76: 310–319. ArticleCASPubMed Google Scholar
Lee K, Drachev VP, Irudayaraj J . DNA-gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano 2011; 5: 2109–2117. ArticleCASPubMed Google Scholar
Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J . CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 2013; 171: 280–287. ArticleCASPubMed Google Scholar
Wei X, Senanayake TH, Warren G, Vinogradov S V . Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of cd44-positive and drug-resistant tumors. Bioconjug Chem 2013; 24: 658–668. ArticleCASPubMedPubMed Central Google Scholar
Liu Y, Lu WL, Guo J, Du J, Li T, Wu JW et al. A potential target associated with both cancer and cancer stem cells: a combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. J Control Release 2008; 129: 18–25. ArticleCASPubMed Google Scholar
Bostad M, Berg K, Høgset A, Skarpen E, Stenmark H, Selbo PK . Photochemical internalization (PCI) of immunotoxins targeting CD133 is specific and highly potent at femtomolar levels in cells with cancer stem cell properties. J Control Release 2013; 168: 317–326. ArticleCASPubMed Google Scholar
Yang C, Xiong F, Wang J, Dou J, Chen J, Chen D et al. Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles against cancer stem-like cell activity in multiple myeloma. Nanomedicine (Lond) 2013; 9: 45–60. ArticleCAS Google Scholar
Yu Z, Ni M, Xiong M, Zhang X, Cai G, Chen H et al. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine 2015; 10: 2537–2554. ArticlePubMedPubMed CentralCAS Google Scholar
Takebe N, Harris PJ, Warren RQ, Ivy SP . Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97–106. ArticleCASPubMed Google Scholar
Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol Cancer Ther 2012; 11: 165–173. ArticleCASPubMed Google Scholar
Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H et al. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 2012; 18: 1291–1302. ArticleCASPubMed Google Scholar
Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG . A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 2011; 11: 464–473. ArticleCASPubMedPubMed Central Google Scholar
You J, Zhao J, Wen X, Wu C, Huang Q, Guan F et al. Chemoradiation therapy using cyclopamine-loaded liquid–lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J Control Release 2015; 202: 40–48. ArticleCASPubMedPubMed Central Google Scholar
Kumar V, Mondal G, Slavik P, Rachagani S, Batra SK, Mahato RI . Codelivery of small molecule Hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol Pharm 2015; 12: 1289–1298. ArticleCASPubMedPubMed Central Google Scholar
Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther 2011; 19: 1538–1546. ArticleCASPubMedPubMed Central Google Scholar
Lo WL, Chien Y, Chiou GY, Tseng LM, Hsu HS, Chang YL et al. Nuclear localization signal-enhanced RNA interference of EZH2 and Oct4 in the eradication of head and neck squamous cell carcinoma-derived cancer stem cells. Biomaterials 2012; 33: 3693–3709. ArticleCASPubMed Google Scholar