Glenny, A. T., Pope, C. G., Waddington, H. & Wallace, U. Immunological notes. XVI1.−XXIV. J. Pathol. Bacteriol.29, 31–40 (1926). ArticleCAS Google Scholar
Lindblad, E. B. Aluminium compounds for use in vaccines. Immunol. Cell Biol.82, 497–505 (2004). ArticleCASPubMed Google Scholar
HogenEsch, H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol.4, 406 (2013). Google Scholar
Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med.19, 1597–1608 (2013). ArticleCASPubMed Google Scholar
Bonam, S. R., Partidos, C. D., Halmuthur, S. K. M. & Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci.38, 771–793 (2017). ArticleCASPubMed Google Scholar
Hem, S. L. & HogenEsch, H. Aluminum-containing adjuvants: properties, formulation, and use. In Vaccine Adjuvants and Delivery Systems (ed. Singh, M.) 81–114 (John Wiley & Sons, Inc., Hoboken, NJ, 2007).
Hem, S. L. & Johnston, C. T. Production and characterization of aluminum-containing adjuvants. In Vaccine Development and Manufacturing (Eds. Wen, E. P. et al.) 319–346 (John Wiley & Sons, Inc., Hoboken, NJ, 2015). Google Scholar
He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin Immunother.11, 477–488 (2015). ArticlePubMedPubMed Central Google Scholar
Lindblad, E. B. & Schonberg, N. E. Aluminum adjuvants: preparation, application, dosage, and formulation with antigen. Methods Mol. Biol.626, 41–58 (2010). ArticleCASPubMed Google Scholar
Dey, A. K., Malyala, P. & Singh, M. Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Rev. Vaccin.13, 671–685 (2014). ArticleCAS Google Scholar
Gupta, R. K. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev.32, 155–172 (1998). ArticleCASPubMed Google Scholar
Dandashli, E. A. et al. Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm. Dev. Technol.7, 401–406 (2002). ArticleCASPubMed Google Scholar
Yau, K. P., Schulze, D. G., Johnston, C. T. & Hem, S. L. Aluminum hydroxide adjuvant produced under constant reactant concentration. J. Pharm. Sci.95, 1822–1833 (2006). ArticleCASPubMed Google Scholar
Callahan, P. M., Shorter, A. L. & Hem, S. L. The importance of surface charge in the optimization of antigen-adjuvant interactions. Pharm. Res.8, 851–858 (1991). ArticleCASPubMed Google Scholar
Hsu, P. H. Aluminum oxides and oxyhydroxides. In Minerals in Soil Environments (eds. Dixon, J. B. & Weed, S. B.) 331–378 (Soil Society of America, Madison, WI, 1989).
Burrell, L. S. et al. Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part I: composition and structure. Vaccine19, 275–281 (2000). ArticleCASPubMed Google Scholar
Hem, S. L., Klepak, P. B. & Lindblad, E. B. Aluminum phosphate adjuvant. In Handbook of Pharmaceutical Excipients (eds. Rowe, R. C. et al.) 40–41 (Pharmaceutical Press, London, 2006).
Chang, M. F., White, J. L., Nail, S. L. & Hem, S. L. Role of the electrostatic attractive force in the adsorption of proteins by aluminum hydroxide adjuvant. PDA J. Pharm. Sci. Technol.51, 25–29 (1997). CASPubMed Google Scholar
Klein, J., Ushio, M., Burrell, L. S., Wenslow, B. & Hem, S. L. Analysis of aluminum hydroxyphosphate vaccine adjuvants by (27)Al MAS NMR. J. Pharm. Sci.89, 311–321 (2000). ArticleCASPubMed Google Scholar
Al-Shakhshir, R. H., Lee, A. L., White, J. L. & Hem, S. L. Interactions in model vaccines composed of mixtures of aluminum-containing adjuvants. J. Colloid Interface Sci.169, 197–203 (1995). ArticleCAS Google Scholar
Caulfield, M. J. et al. Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Hum. Vaccin3, 139–145 (2007). ArticlePubMed Google Scholar
Hem, S. L., Johnston, C. T. & HogenEsch, H. Imject Alum is not aluminum hydroxide adjuvant or aluminum phosphate adjuvant. Vaccine25, 4985–4986 (2007). ArticleCASPubMed Google Scholar
Cain, D. W., Sanders, S. E., Cunningham, M. M. & Kelsoe, G. Disparate adjuvant properties among three formulations of “alum”. Vaccine31, 653–660 (2013). ArticleCASPubMed Google Scholar
Burrell, L. S. et al. Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part II: physicochemical properties. Vaccine19, 282–287 (2000). ArticleCASPubMed Google Scholar
Wang, S. L., Johnston, C. T., Bish, D. L., White, J. L. & Hem, S. L. Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J. Colloid Interface Sci.260, 26–35 (2003). ArticleCASPubMed Google Scholar
Morefield, G. L. et al. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine23, 1588–1595 (2005). ArticleCASPubMed Google Scholar
Harris, J. R. et al. Alhydrogel(R) adjuvant, ultrasonic dispersion and protein binding: a TEM and analytical study. Micron43, 192–200 (2012). ArticleCASPubMed Google Scholar
Kolade, O. O., Jin, W., Tengroth, C., Green, K. D. & Bracewell, D. G. Shear effects on aluminum phosphate adjuvant particle properties in vaccine drug products. J. Pharm. Sci.104, 378–387 (2015). ArticleCASPubMed Google Scholar
Shardlow, E., Mold, M. & Exley, C. From stock bottle to vaccine: elucidating the particle size distributions of aluminum adjuvants using Dynamic Light Scattering. Front. Chem.4, 48 (2016). PubMed Google Scholar
Art, J. F., Vander Straeten, A. & Dupont-Gillain, C. C. NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants. Int. J. Pharm.517, 226–233 (2017). ArticleCASPubMed Google Scholar
Morefield, G. L., HogenEsch, H., Robinson, J. P. & Hem, S. L. Distribution of adsorbed antigen in mono-valent and combination vaccines. Vaccine22, 1973–1984 (2004). ArticleCASPubMed Google Scholar
Burrell, L. S., White, J. L. & Hem, S. L. Stability of aluminium-containing adjuvants during aging at room temperature. Vaccine18, 2188–2192 (2000). ArticleCASPubMed Google Scholar
Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci.162, 87–106 (2011). ArticleCASPubMed Google Scholar
Norde, W. Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci.25, 267–340 (1986). ArticleCASPubMed Google Scholar
Mahn, A., Lienqueo, M. E. & Asenjo, J. A. Effect of surface hydrophobicity distribution on retention of ribonucleases in hydrophobic interaction chromatography. J. Chromatogr. A1043, 47–55 (2004). ArticleCASPubMed Google Scholar
Van Ramshorst, J. D. The adsorption of diphtheria toxoid on aluminium phosphate. Recl. Trav. Chim. Des. Pays-Bas68, 169–180 (1949). Article Google Scholar
Seeber, S. J., White, J. L. & Hem, S. L. Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine9, 201–203 (1991). ArticleCASPubMed Google Scholar
Hallgren, E., Kalman, F., Farnan, D., Horvath, C. & Stahlberg, J. Protein retention in ion-exchange chromatography: effect of net charge and charge distribution. J. Chromatogr. A877, 13–24 (2000). ArticleCASPubMed Google Scholar
Dagouassat, N. et al. A novel bipolar mode of attachment to aluminium-containing adjuvants by BBG2Na, a recombinant subunit hRSV vaccine. Vaccine19, 4143–4152 (2001). ArticleCASPubMed Google Scholar
Hansen, B. et al. Effect of the strength of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant on the immune response. Vaccine27, 888–892 (2009). ArticleCASPubMed Google Scholar
Egan, P. M., Belfast, M. T., Gimenez, J. A., Sitrin, R. D. & Mancinelli, R. J. Relationship between tightness of binding and immunogenicity in an aluminum-containing adjuvant-adsorbed hepatitis B vaccine. Vaccine27, 3175–3180 (2009). ArticleCASPubMed Google Scholar
Morefield, G. L. et al. Effect of phosphorylation of ovalbumin on adsorption by aluminum-containing adjuvants and elution upon exposure to interstitial fluid. Vaccine23, 1502–1506 (2005). ArticleCASPubMed Google Scholar
Lu, F., Boutselis, I., Borch, R. F. & HogenEsch, H. Control of antigen-binding to aluminum adjuvants and the immune response with a novel phosphonate linker. Vaccine31, 4362–4367 (2013). ArticleCASPubMed Google Scholar
Zhao, Q. & Sitrin, R. Surface phosphophilicity of aluminum-containing adjuvants probed by their efficiency for catalyzing the P−O bond cleavage with chromogenic and fluorogenic substrates. Anal. Biochem.295, 76–81 (2001). ArticleCASPubMed Google Scholar
Jully, V., Moniotte, N., Mathot, F., Lemoine, D. & Preat, V. Development of a high-throughput screening platform to study the adsorption of antigens onto aluminum-containing adjuvants. J. Pharm. Sci.104, 557–565 (2015). ArticleCASPubMed Google Scholar
Jully, V., Mathot, F., Moniotte, N., Preat, V. & Lemoine, D. Mechanisms of antigen adsorption onto an aluminum-hydroxide adjuvant evaluated by high-throughput screening. J. Pharm. Sci.105, 1829–1836 (2016). ArticleCASPubMed Google Scholar
Ahl, P. L. et al. Quantitative analysis of vaccine antigen adsorption to aluminum adjuvant using an automated high throughput method. PDA J. Pharm. Sci. Technol.72, 149–162 (2018). ArticlePubMed Google Scholar
Jendrek, S., Little, S. F., Hem, S., Mitra, G. & Giardina, S. Evaluation of the compatibility of a second generation recombinant anthrax vaccine with aluminum-containing adjuvants. Vaccine21, 3011–3018 (2003). ArticleCASPubMed Google Scholar
Latour, R. A. The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior. J. Biomed. Mater. Res. A103, 949–958 (2015). ArticlePubMedCAS Google Scholar
Heimlich, J. M., Regnier, F. E., White, J. L. & Hem, S. L. The in vitro displacement of adsorbed model antigens from aluminium-containing adjuvants by interstitial proteins. Vaccine17, 2873–2881 (1999). ArticleCASPubMed Google Scholar
Jiang, D., Morefield, G. L., HogenEsch, H. & Hem, S. L. Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid. Vaccine24, 1665–1669 (2006). ArticleCASPubMed Google Scholar
Hansen, B., Sokolovska, A., HogenEsch, H. & Hem, S. L. Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine25, 6618–6624 (2007). ArticleCASPubMed Google Scholar
Amari, J. V., Levesque, P., Lian, Z., Lowden, T. & deAlwis, U. Concentration determination of a recombinant vaccine antigen adsorbed onto an alum adjuvant by chemiluminescent nitrogen detection. Pharm. Res.22, 33–37 (2005). ArticleCASPubMed Google Scholar
Ugozzoli, M. et al. Flow cytometry: an alternative method for direct quantification of antigens adsorbed to aluminum hydroxide adjuvant. Anal. Biochem.418, 224–230 (2011). ArticleCASPubMed Google Scholar
Li, M. et al. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine34, 4422–4428 (2016). ArticleCASPubMed Google Scholar
Westdijk, J. et al. Antigenic fingerprinting of diphtheria toxoid adsorbed to aluminium phosphate. Biologicals47, 69–75 (2017). ArticleCASPubMed Google Scholar
Agnolon, V. et al. Multiplex immunoassay for in vitro characterization of acellular pertussis antigens in combination vaccines. Vaccine34, 1040–1046 (2016). ArticleCASPubMed Google Scholar
Knight, P. A. The relative efficacy of a variety of aluminium adjuvants on tetanus toxoid. Prog. Immunobiol. Stand.3, 252–257 (1967). CASPubMed Google Scholar
Seeber, S. J., White, J. L. & Hem, S. L. Solubilization of aluminum-containing adjuvants by constituents of interstitial fluid. J. Parenter. Sci. Technol.45, 156–159 (1991). CASPubMed Google Scholar
Lai, X. et al. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance spectroscopy. Appl. Spectrosc.62, 784–790 (2008). ArticleCASPubMed Google Scholar
Clausi, A. L., Merkley, S. A., Carpenter, J. F. & Randolph, T. W. Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J. Pharm. Sci.97, 2049–2061 (2008). ArticleCASPubMed Google Scholar
al-Shakhshir, R. H., Regnier, F. E., White, J. L. & Hem, S. L. Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine13, 41–44 (1995). ArticleCASPubMed Google Scholar
Rinella, J. V., Workman, R. F., Hermodson, M. A., White, J. L. & Hem, S. L. Elutability of proteins from aluminum-containing vaccine adjuvants by treatment with surfactants. J. Colloid Interface Sci.197, 48–56 (1998). ArticleCASPubMed Google Scholar
Peek, L. J., Martin, T. T., Elk Nation, C., Pegram, S. A. & Middaugh, C. R. Effects of stabilizers on the destabilization of proteins upon adsorption to aluminum salt adjuvants. J. Pharm. Sci.96, 547–557 (2007). ArticleCASPubMed Google Scholar
Manning, M. C., Chou, D. K., Murphy, B. M., Payne, R. W. & Katayama, D. S. Stability of protein pharmaceuticals: an update. Pharm. Res.27, 544–575 (2010). ArticlePubMedCAS Google Scholar
Wittayanukulluk, A., Jiang, D., Regnier, F. E. & Hem, S. L. Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen. Vaccine22, 1172–1176 (2004). ArticleCASPubMed Google Scholar
Estey, T. et al. Evaluation of chemical degradation of a trivalent recombinant protein vaccine against botulinum neurotoxin by LysC peptide mapping and MALDI-TOF mass spectrometry. J. Pharm. Sci.98, 2994–3012 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sturgess, A. W. et al. Haemophilus influenzae type b conjugate vaccine stability: catalytic depolymerization of PRP in the presence of aluminum hydroxide. Vaccine17, 1169–1178 (1999). ArticleCASPubMed Google Scholar
Pujar, N. S. et al. Base hydrolysis of phosphodiester bonds in pneumococcal polysaccharides. Biopolymers75, 71–84 (2004). ArticleCASPubMed Google Scholar
Maddux, N. R., Joshi, S. B., Volkin, D. B., Ralston, J. P. & Middaugh, C. R. Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J. Pharm. Sci.100, 4171–4197 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dong, A., Jones, L. S., Kerwin, B. A., Krishnan, S. & Carpenter, J. F. Secondary structures of proteins adsorbed onto aluminum hydroxide: infrared spectroscopic analysis of proteins from low solution concentrations. Anal. Biochem.351, 282–289 (2006). ArticleCASPubMed Google Scholar
Agopian, A. et al. Secondary structure analysis of HIV-1-gp41 in solution and adsorbed to aluminum hydroxide by Fourier transform infrared spectroscopy. Biochim. Biophys. Acta1774, 351–358 (2007). ArticleCASPubMed Google Scholar
Iyer, V. et al. Preformulation characterization of an aluminum salt-adjuvanted trivalent recombinant protein-based vaccine candidate against Streptococcus pneumoniae. J. Pharm. Sci.101, 3078–3090 (2012). ArticleCASPubMed Google Scholar
Jones, L. S. et al. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J. Biol. Chem.280, 13406–13414 (2005). ArticleCASPubMed Google Scholar
Ausar, S. F. et al. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines. J. Pharm. Sci.100, 431–440 (2011). ArticleCASPubMed Google Scholar
Ljutic, B. et al. Formulation, stability and immunogenicity of a trivalent pneumococcal protein vaccine formulated with aluminum salt adjuvants. Vaccine30, 2981–2988 (2012). ArticleCASPubMed Google Scholar
Regnier, M. et al. Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant. Vaccine30, 6783–6788 (2012). ArticleCASPubMed Google Scholar
Wagner, L. et al. Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant. Clin. Vaccin. Immunol.19, 1465–1473 (2012). ArticleCAS Google Scholar
Hansen, B. et al. Effect of the strength of adsorption of HIV 1 SF162dV2gp140 to aluminum-containing adjuvants on the immune response. J. Pharm. Sci.100, 3245–3250 (2011). ArticleCASPubMed Google Scholar
Iyer, S., HogenEsch, H. & Hem, S. L. Relationship between the degree of antigen adsorption to aluminum hydroxide adjuvant in interstitial fluid and antibody production. Vaccine21, 1219–1223 (2003). ArticleCASPubMed Google Scholar
Weissburg, R. P. et al. Characterization of the MN gp120 HIV-1 vaccine: antigen binding to alum. Pharm. Res.12, 1439–1446 (1995). ArticleCASPubMed Google Scholar
Vecchi, S., Bufali, S., Skibinski, D. A., O’Hagan, D. T. & Singh, M. Aluminum adjuvant dose guidelines in vaccine formulation for preclinical evaluations. J. Pharm. Sci.101, 17–20 (2012). ArticleCASPubMed Google Scholar
Baylor, N. W., Egan, W. & Richman, P. Aluminum salts in vaccines—US perspective. Vaccine20(Suppl 3), S18–S23 (2002). ArticleCASPubMed Google Scholar
Jensen, O. M. & Koch, C. On the effect of Al(OH)3 as an immunological adjuvant. APMIS96, 257–264 (1988). ArticleCAS Google Scholar
Davis, H. L. Novel vaccines and adjuvant systems: the utility of animal models for predicting immunogenicity in humans. Hum. Vaccin.4, 246–250 (2008). ArticleCASPubMed Google Scholar
Oleszycka, E. & Lavelle, E. C. Immunomodulatory properties of the vaccine adjuvant alum. Curr. Opin. Immunol.28, 1–5 (2014). ArticleCASPubMed Google Scholar
Mannhalter, J. W., Neychev, H. O., Zlabinger, G. J., Ahmad, R. & Eibl, M. M. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin. Exp. Immunol.61, 143–151 (1985). CASPubMedPubMed Central Google Scholar
Ghimire, T. R., Benson, R. A., Garside, P. & Brewer, J. M. Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol. Lett.147, 55–62 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rimaniol, A. C. et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine22, 3127–3135 (2004). ArticleCASPubMed Google Scholar
Sokolovska, A., Hem, S. L. & HogenEsch, H. Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine25, 4575–4585 (2007). ArticleCASPubMed Google Scholar
Calabro, S. et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine29, 1812–1823 (2011). ArticleCASPubMed Google Scholar
Lu, F. & HogenEsch, H. Kinetics of the inflammatory response following intramuscular injection of aluminum adjuvant. Vaccine31, 3979–3986 (2013). ArticleCASPubMed Google Scholar
de Veer, M., Kemp, J., Chatelier, J., Elhay, M. J. & Meeusen, E. N. The kinetics of soluble and particulate antigen trafficking in the afferent lymph, and its modulation by aluminum-based adjuvant. Vaccine28, 6597–6602 (2010). ArticlePubMedCAS Google Scholar
Holt, L. B. Developments in Diphtheria Prophylaxis (W. Heinemann, Ltd., London, 1950).
Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med.17, 996–1002 (2011). ArticleCASPubMed Google Scholar
McKee, A. S. et al. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc. Natl. Acad. Sci. USA110, E1122–E1131 (2013). ArticleCASPubMed Google Scholar
Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008). ArticleCASPubMedPubMed Central Google Scholar
Riteau, N. et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis.3, e403 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y., Rahman, D. & Lehner, T. A comparative study of stress-mediated immunological functions with the adjuvanticity of alum. J. Biol. Chem.287, 17152–17160 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA106, 870–875 (2009). ArticleCASPubMed Google Scholar
Oleszycka, E. et al. IL-1alpha and inflammasome-independent IL-1beta promote neutrophil infiltration following alum vaccination. FEBS J.283, 9–24 (2016). ArticleCASPubMed Google Scholar
Rose, W. A. 2nd, Okragly, A. J., Patel, C. N. & Benschop, R. J. IL-33 released by alum is responsible for early cytokine production and has adjuvant properties. Sci. Rep.5, 13146 (2015). ArticleCASPubMed Google Scholar
Li, H., Willingham, S. B., Ting, J. P. & Re, F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol.181, 17–21 (2008). ArticleCASPubMedPubMed Central Google Scholar
Goto, N. & Akama, K. Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol. Immunol.26, 1121–1132 (1982). ArticleCASPubMed Google Scholar
Stephen, J. et al. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccin.2, 1 (2017). ArticleCAS Google Scholar
Yang, C. W., Strong, B. S., Miller, M. J. & Unanue, E. R. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J. Immunol.185, 2927–2934 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liang, F. et al. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci. Transl. Med.9, eaal2094 (2017). ArticlePubMed Google Scholar
Lu, F. et al. Alpha-D-glucan nanoparticulate adjuvant induces a transient inflammatory response at the injection site and targets antigen to migratory dendritic cells. Npj Vaccin.2, 4 (2017). Article Google Scholar
Ulanova, M., Tarkowski, A., Hahn-Zoric, M. & Hanson, L. A. The Common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immun.69, 1151–1159 (2001). ArticleCASPubMedPubMed Central Google Scholar
Seubert, A., Monaci, E., Pizza, M., O’Hagan, D. T. & Wack, A. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J. Immunol.180, 5402–5412 (2008). ArticleCASPubMed Google Scholar
Li, H., Nookala, S. & Re, F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J. Immunol.178, 5271–5276 (2007). ArticleCASPubMed Google Scholar
Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181, 3755–3759 (2008). ArticleCASPubMed Google Scholar
Franchi, L. & Nunez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol.38, 2085–2089 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nat. Immunol.2, 947–950 (2001). ArticleCASPubMed Google Scholar
Gavin, A. L. et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science314, 1936–1938 (2006). ArticleCASPubMedPubMed Central Google Scholar
Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med.17, 479–487 (2011). ArticleCASPubMed Google Scholar
Khameneh, H. J. et al. The Syk-NFAT-IL-2 pathway in dendritic cells is required for optimal sterile immunity elicited by alum adjuvants. J. Immunol.198, 196–204 (2017). ArticleCASPubMed Google Scholar
Mori, A. et al. The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur. J. Immunol.42, 2709–2719 (2012). ArticleCASPubMed Google Scholar
Ramanathan, V. D., Badenoch-Jones, P. & Turk, J. L. Complement activation by aluminium and zirconium compounds. Immunology37, 881–888 (1979). CASPubMedPubMed Central Google Scholar
Guven, E., Duus, K., Laursen, I., Hojrup, P. & Houen, G. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway. PLoS ONE8, e74445 (2013). ArticleCASPubMedPubMed Central Google Scholar
Suresh, R., Chandrasekaran, P., Sutterwala, F. S. & Mosser, D. M. Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J. Cell Sci.129, 1928–1939 (2016). ArticleCASPubMedPubMed Central Google Scholar
Wu, T. Y. et al. Rational design of small molecules as vaccine adjuvants. Sci. Transl. Med.6, 263ra160 (2014). ArticlePubMedCAS Google Scholar
Didierlaurent, A. M. et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol.183, 6186–6197 (2009). ArticleCASPubMed Google Scholar
Shi, Y., HogenEsch, H., Regnier, F. E. & Hem, S. L. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine19, 1747–1752 (2001). ArticleCASPubMed Google Scholar
Fox, C. B. Characterization of TLR4 agonist effects on alhydrogel(R) sedimentation: a novel application of laser scattering optical profiling. J. Pharm. Sci.101, 4357–4364 (2012). ArticleCASPubMed Google Scholar
Mullen, G. E. et al. Enhanced antibody production in mice to the malaria antigen AMA1 by CPG 7909 requires physical association of CpG and antigen. Vaccine25, 5343–5347 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fox, C. B. et al. Adsorption of a synthetic TLR7/8 ligand to aluminum oxyhydroxide for enhanced vaccine adjuvant activity: a formulation approach. J. Control Release244, 98–107 (2016). ArticleCASPubMedPubMed Central Google Scholar
Cortez, A. et al. Incorporation of phosphonate into benzonaphthyridine toll-like receptor 7 agonists for adsorption to aluminum hydroxide. J. Med. Chem.59, 5868–5878 (2016). ArticleCASPubMed Google Scholar
Malyala, P. et al. The preparation and physicochemical characterization of aluminum hydroxide/TLR7a, a novel vaccine adjuvant comprising a small molecule adsorbed to aluminum hydroxide. J. Pharm. Sci.107, 1577–1585 (2018). ArticleCASPubMed Google Scholar
Misiak, A. et al. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine35, 5256–5263 (2017). ArticleCASPubMed Google Scholar
Sun, B. et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano7, 10834–10849 (2013). ArticleCASPubMedPubMed Central Google Scholar
Li, X., Aldayel, A. M. & Cui, Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control Release173, 148–157 (2014). ArticleCASPubMed Google Scholar
Li, X. et al. Aluminum (oxy)hydroxide nanosticks synthesized in bicontinuous reverse microemulsion have potent vaccine adjuvant activity. ACS Appl. Mater. Interfaces9, 22893–22901 (2017). ArticleCASPubMedPubMed Central Google Scholar
Jiang, H. et al. Turning the old adjuvant from gel to nanoparticles to amplify CD8(+) T cell responses. Adv. Sci. (Weinh.)5, 1700426 (2018). ArticleCAS Google Scholar
Hassett, K. J. et al. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants. J. Pharm. Sci.104, 627–639 (2015). ArticleCASPubMedPubMed Central Google Scholar
Francica, J. R. et al. Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Adv.1, 2329–2342 (2017). ArticlePubMedPubMed Central Google Scholar
Burny, W. et al. Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. Front. Immunol.8, 943 (2017). ArticlePubMedPubMed Central Google Scholar