Phylogenomics provides robust support for a two-domains tree of life (original) (raw)

References

  1. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).
    CAS PubMed Google Scholar
  2. Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B 370, 20140330 (2015).
    Google Scholar
  3. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).
    CAS PubMed Google Scholar
  4. Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).
    CAS PubMed Google Scholar
  5. Williams, T., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).
    CAS PubMed Google Scholar
  6. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
    CAS PubMed PubMed Central Google Scholar
  7. Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).
    CAS PubMed Google Scholar
  8. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
    CAS PubMed PubMed Central Google Scholar
  9. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).
    CAS PubMed Google Scholar
  10. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).
    CAS PubMed PubMed Central Google Scholar
  11. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. Lond. B 364, 2197–2207 (2009).
    Google Scholar
  12. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).
    CAS PubMed PubMed Central Google Scholar
  13. Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).
    CAS PubMed Google Scholar
  14. Williams, T., Foster, P. G., Nye, T. M. W., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci. 279, 4870–4879 (2012).
    CAS PubMed PubMed Central Google Scholar
  15. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
    CAS PubMed Google Scholar
  16. Lake, J., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984).
    CAS PubMed PubMed Central Google Scholar
  17. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).
    CAS PubMed Google Scholar
  18. Williams, T. A., Embley, T. M., Williams, T. A. & Embley, T. M. Changing ideas about eukaryotic origins. Phil. Trans. R. Soc. Lond. B 370, 20140318 (2015).
    Google Scholar
  19. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
    CAS PubMed PubMed Central Google Scholar
  20. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
    CAS PubMed Google Scholar
  21. Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002).
    CAS PubMed PubMed Central Google Scholar
  22. Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017).
    PubMed PubMed Central Google Scholar
  23. Gaia, M., Da Cunha, V. & Forterre, P. in Molecular Mechanisms of Microbial Evolution (ed. Rampelotto, P. H.) 55–99 (Springer, 2018).
  24. Da Cunha, V., Gaia, M., Nasir, A. & Forterre, P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 14, e1007215 (2018).
    PubMed PubMed Central Google Scholar
  25. Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).
    PubMed PubMed Central Google Scholar
  26. Hirt, R. P. et al. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999).
    CAS PubMed PubMed Central Google Scholar
  27. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (Suppl. 1), S4 (2007).
  28. Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).
    PubMed Google Scholar
  29. Nasir, A., Kim, K. M., Da Cunha, V. & Caetano-Anollés, G. Arguments reinforcing the three-domain view of diversified cellular life. Archaea 2016, 1851865 (2016).
    PubMed PubMed Central Google Scholar
  30. Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001).
    CAS PubMed Google Scholar
  31. Harish, A. & Kurland, C. G. Empirical genome evolution models root the tree of life. Biochimie 138, 137–155 (2017).
    CAS PubMed Google Scholar
  32. Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509–523 (1999).
    CAS PubMed Google Scholar
  33. Harish, A. & Kurland, C. G. Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie 138, 168–183 (2017).
    CAS PubMed Google Scholar
  34. Yang, S., Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA 102, 373–378 (2005).
    CAS PubMed PubMed Central Google Scholar
  35. Caetano-Anolles, G. An evolutionarily structured universe of protein architecture. Genome Res. 13, 1563–1571 (2003).
    CAS PubMed PubMed Central Google Scholar
  36. Mayr, E. Two empires or three? Proc. Natl Acad. Sci. USA 95, 9720–9723 (1998).
    CAS PubMed PubMed Central Google Scholar
  37. Narrowe, A. B. et al. Complex evolutionary history of translation Elongation Factor 2 and diphthamide biosynthesis in Archaea and parabasalids. Genome Biol. Evol. 10, 2380–2393 (2018).
    CAS PubMed PubMed Central Google Scholar
  38. Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol. 5, R17 (2004).
    PubMed PubMed Central Google Scholar
  39. Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F. & Forterre, P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 6, R42 (2005).
    PubMed PubMed Central Google Scholar
  40. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
    CAS PubMed Google Scholar
  41. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS PubMed Google Scholar
  42. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS PubMed Google Scholar
  43. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS PubMed PubMed Central Google Scholar
  44. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).
    CAS PubMed Google Scholar
  45. Foster, P. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).
    PubMed Google Scholar
  46. Zhou, Y., Brinkmann, H., Rodrigue, N., Lartillot, N. & Philippe, H. A dirichlet process covarion mixture model and its assessments using posterior predictive discrepancy tests. Mol. Biol. Evol. 27, 371–384 (2010).
    CAS PubMed Google Scholar
  47. Lartillot, N. L., Odrigue, N. I. R., Tubbs, D. A. S. & Icher, J. A. R. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    CAS PubMed Google Scholar
  48. Bollback, J. P. Bayesian model adequacy and choice in phylogenetics. Mol. Biol. Evol. 19, 1171–1180 (2002).
    CAS PubMed Google Scholar
  49. Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).
    CAS PubMed Google Scholar
  50. Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004).
    CAS PubMed Google Scholar
  51. Whelan, S. Spatial and temporal heterogeneity in nucleotide sequence evolution. Mol. Biol. Evol. 25, 1683–1694 (2008).
    CAS PubMed Google Scholar
  52. Gouy, R., Baurain, D. & Philippe, H. Rooting the tree of life: the phylogenetic jury is still out. Phil. Trans. R. Soc. Lond. B 370, 20140329 (2015).
    Google Scholar
  53. Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously-evolved sequence alignments. Syst. Biol. https://doi.org/10.1093/sysbio/syz051 (2019).
  54. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).
    CAS PubMed Google Scholar
  55. Hedtke, S. M., Townsend, T. M. & Hillis, D. M. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522–529 (2006).
    PubMed Google Scholar
  56. Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).
    CAS PubMed Google Scholar
  57. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
    CAS PubMed Google Scholar
  58. Roth, A. C. J., Gonnet, G. H. & Dessimoz, C. Algorithm of OMA for large-scale orthology inference. BMC Bioinform. 9, 518 (2008).
    Google Scholar
  59. Altenhoff, A. M. et al. Standardized benchmarking in the quest for orthologs. Nat. Methods 13, 425–430 (2016).
    CAS PubMed PubMed Central Google Scholar
  60. Williams, T. A. & Embley, T. M. Archaeal ‘dark matter’ and the origin of eukaryotes. Genome Biol. Evol. 6, 474–481 (2014).
    PubMed PubMed Central Google Scholar
  61. Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
    PubMed PubMed Central Google Scholar
  62. Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 100C, 56–62 (2015).
    PubMed Google Scholar
  63. Roch, S., Nute, M. & Warnow, T. Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods. Syst. Biol. 68, 281–297 (2019).
    PubMed Google Scholar
  64. Steel, M. & Rodrigo, A. Maximum-likelihood supertrees. Syst. Biol. 57, 243–250 (2008).
    PubMed Google Scholar
  65. Akanni, W. A., Wilkinson, M., Creevey, C. J., Foster, P. G. & Pisani, D. Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics. R. Soc. Open Sci. 2, 140436 (2015).
    PubMed PubMed Central Google Scholar
  66. Zhang, C., Sayyari, E. & Mirarab, S. in Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science Vol . 10562 (eds Meidanis, J. & Nakhleh, L.) 53–75 (Springer, 2017).
  67. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).
    CAS PubMed PubMed Central Google Scholar
  68. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).
    CAS PubMed PubMed Central Google Scholar
  69. Fournier, G. P. & Gogarten, J. P. Rooting the ribosomal tree of life. Mol. Biol. Evol. 27, 1792–1801 (2010).
    CAS PubMed Google Scholar
  70. Lake, J., Skophammer, R. G., Herbold, C. W. & Servin, J. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. Lond. B 364, 2177–2185 (2009).
    CAS Google Scholar
  71. Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006).
    PubMed PubMed Central Google Scholar
  72. Williams, T. A. et al. New substitution models for rooting phylogenetic trees. Phil. Trans. R. Soc. Lond. B 370, 20140336 (2015).
    Google Scholar
  73. Klopfstein, S., Vilhelmsen, L. & Ronquist, F. A nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol. 64, 1089–1103 (2015).
    PubMed PubMed Central Google Scholar
  74. Cherlin, S. et al. The effect of non-reversibility on inferring rooted phylogenies. Mol. Biol. Evol. 35, 984–1002 (2018).
    CAS PubMed Google Scholar
  75. Tria, F. D. K., Landan, G. & Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol. 1, 0193 (2017).
    Google Scholar
  76. Szöllõsi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).
    PubMed PubMed Central Google Scholar
  77. Timmis, J. N., Ayliffe, Ma, Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).
    CAS PubMed Google Scholar
  78. McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).
    CAS PubMed Google Scholar
  79. Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).
    CAS PubMed PubMed Central Google Scholar
  80. Brown, J. R. & Doolittle, W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl Acad. Sci. USA 92, 2441–2445 (1995).
    CAS PubMed PubMed Central Google Scholar
  81. Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227, 53–64 (2005).
    PubMed Google Scholar
  82. Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).
    PubMed PubMed Central Google Scholar
  83. Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).
    Google Scholar
  84. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
    CAS PubMed PubMed Central Google Scholar
  85. Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).
    CAS PubMed Google Scholar
  86. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
    CAS PubMed PubMed Central Google Scholar
  87. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS PubMed PubMed Central Google Scholar
  88. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
    PubMed PubMed Central Google Scholar
  89. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS PubMed Google Scholar
  90. Williams, T. et al. Data from ‘Phylogenomics provides robust support for a two-domains tree of life’ (Figshare, 2019); https://doi.org/10.6084/m9.figshare.8950859.v2
  91. Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).
    CAS PubMed PubMed Central Google Scholar

Download references