Phylogenomics provides robust support for a two-domains tree of life (original) (raw)
References
Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature440, 623–630 (2006). CASPubMed Google Scholar
Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B370, 20140330 (2015). Google Scholar
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol.27, R1177–R1192 (2017). CASPubMed Google Scholar
Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans.41, 451–457 (2013). CASPubMed Google Scholar
Williams, T., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature504, 231–236 (2013). CASPubMed Google Scholar
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA74, 5088–5090 (1977). CASPubMedPubMed Central Google Scholar
Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science312, 1011–1014 (2006). CASPubMed Google Scholar
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA87, 4576–4579 (1990). CASPubMedPubMed Central Google Scholar
Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol.13, 159–168 (1999). CASPubMed Google Scholar
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA105, 20356–20361 (2008). CASPubMedPubMed Central Google Scholar
Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. Lond. B364, 2197–2207 (2009). Google Scholar
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA112, 6670–6675 (2015). CASPubMedPubMed Central Google Scholar
Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol.19, 580–587 (2011). CASPubMed Google Scholar
Williams, T., Foster, P. G., Nye, T. M. W., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci.279, 4870–4879 (2012). CASPubMedPubMed Central Google Scholar
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016). CASPubMed Google Scholar
Lake, J., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA81, 3786–3790 (1984). CASPubMedPubMed Central Google Scholar
Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol.15, 711–723 (2017). CASPubMed Google Scholar
Williams, T. A., Embley, T. M., Williams, T. A. & Embley, T. M. Changing ideas about eukaryotic origins. Phil. Trans. R. Soc. Lond. B370, 20140318 (2015). Google Scholar
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature521, 173–179 (2015). CASPubMedPubMed Central Google Scholar
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature541, 353–358 (2017). CASPubMed Google Scholar
Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA99, 1420–1425 (2002). CASPubMedPubMed Central Google Scholar
Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet.13, e1006810 (2017). PubMedPubMed Central Google Scholar
Gaia, M., Da Cunha, V. & Forterre, P. in Molecular Mechanisms of Microbial Evolution (ed. Rampelotto, P. H.) 55–99 (Springer, 2018).
Da Cunha, V., Gaia, M., Nasir, A. & Forterre, P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet.14, e1007215 (2018). PubMedPubMed Central Google Scholar
Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet.14, e1007080 (2018). PubMedPubMed Central Google Scholar
Hirt, R. P. et al. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA96, 580–585 (1999). CASPubMedPubMed Central Google Scholar
Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol.7 (Suppl. 1), S4 (2007).
Bergsten, J. A review of long-branch attraction. Cladistics21, 163–193 (2005). PubMed Google Scholar
Nasir, A., Kim, K. M., Da Cunha, V. & Caetano-Anollés, G. Arguments reinforcing the three-domain view of diversified cellular life. Archaea2016, 1851865 (2016). PubMedPubMed Central Google Scholar
Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol.53, 711–723 (2001). CASPubMed Google Scholar
Harish, A. & Kurland, C. G. Empirical genome evolution models root the tree of life. Biochimie138, 137–155 (2017). CASPubMed Google Scholar
Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol.49, 509–523 (1999). CASPubMed Google Scholar
Harish, A. & Kurland, C. G. Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie138, 168–183 (2017). CASPubMed Google Scholar
Yang, S., Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA102, 373–378 (2005). CASPubMedPubMed Central Google Scholar
Caetano-Anolles, G. An evolutionarily structured universe of protein architecture. Genome Res.13, 1563–1571 (2003). CASPubMedPubMed Central Google Scholar
Narrowe, A. B. et al. Complex evolutionary history of translation Elongation Factor 2 and diphthamide biosynthesis in Archaea and parabasalids. Genome Biol. Evol.10, 2380–2393 (2018). CASPubMedPubMed Central Google Scholar
Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol.5, R17 (2004). PubMedPubMed Central Google Scholar
Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F. & Forterre, P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol.6, R42 (2005). PubMedPubMed Central Google Scholar
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol.25, 1307–1320 (2008). CASPubMed Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol.59, 307–321 (2010). CASPubMed Google Scholar
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). CASPubMed Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014). CASPubMedPubMed Central Google Scholar
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol.21, 1095–1109 (2004). CASPubMed Google Scholar
Foster, P. Modeling compositional heterogeneity. Syst. Biol.53, 485–495 (2004). PubMed Google Scholar
Zhou, Y., Brinkmann, H., Rodrigue, N., Lartillot, N. & Philippe, H. A dirichlet process covarion mixture model and its assessments using posterior predictive discrepancy tests. Mol. Biol. Evol.27, 371–384 (2010). CASPubMed Google Scholar
Lartillot, N. L., Odrigue, N. I. R., Tubbs, D. A. S. & Icher, J. A. R. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol.62, 611–615 (2013). CASPubMed Google Scholar
Bollback, J. P. Bayesian model adequacy and choice in phylogenetics. Mol. Biol. Evol.19, 1171–1180 (2002). CASPubMed Google Scholar
Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol.24, 2139–2150 (2007). CASPubMed Google Scholar
Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature432, 618–622 (2004). CASPubMed Google Scholar
Whelan, S. Spatial and temporal heterogeneity in nucleotide sequence evolution. Mol. Biol. Evol.25, 1683–1694 (2008). CASPubMed Google Scholar
Gouy, R., Baurain, D. & Philippe, H. Rooting the tree of life: the phylogenetic jury is still out. Phil. Trans. R. Soc. Lond. B370, 20140329 (2015). Google Scholar
Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously-evolved sequence alignments. Syst. Biol.https://doi.org/10.1093/sysbio/syz051 (2019).
Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol.47, 9–17 (1998). CASPubMed Google Scholar
Hedtke, S. M., Townsend, T. M. & Hillis, D. M. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol.55, 522–529 (2006). PubMed Google Scholar
Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell172, 1181–1197 (2018). CASPubMed Google Scholar
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol.2, 1533–1542 (2017). CASPubMed Google Scholar
Roth, A. C. J., Gonnet, G. H. & Dessimoz, C. Algorithm of OMA for large-scale orthology inference. BMC Bioinform.9, 518 (2008). Google Scholar
Williams, T. A. & Embley, T. M. Archaeal ‘dark matter’ and the origin of eukaryotes. Genome Biol. Evol.6, 474–481 (2014). PubMedPubMed Central Google Scholar
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol.2, 1556–1562 (2018). PubMedPubMed Central Google Scholar
Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol.100C, 56–62 (2015). PubMed Google Scholar
Roch, S., Nute, M. & Warnow, T. Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods. Syst. Biol.68, 281–297 (2019). PubMed Google Scholar
Steel, M. & Rodrigo, A. Maximum-likelihood supertrees. Syst. Biol.57, 243–250 (2008). PubMed Google Scholar
Akanni, W. A., Wilkinson, M., Creevey, C. J., Foster, P. G. & Pisani, D. Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics. R. Soc. Open Sci.2, 140436 (2015). PubMedPubMed Central Google Scholar
Zhang, C., Sayyari, E. & Mirarab, S. in Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science Vol . 10562 (eds Meidanis, J. & Nakhleh, L.) 53–75 (Springer, 2017).
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA86, 9355–9359 (1989). CASPubMedPubMed Central Google Scholar
Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA86, 6661–6665 (1989). CASPubMedPubMed Central Google Scholar
Fournier, G. P. & Gogarten, J. P. Rooting the ribosomal tree of life. Mol. Biol. Evol.27, 1792–1801 (2010). CASPubMed Google Scholar
Lake, J., Skophammer, R. G., Herbold, C. W. & Servin, J. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. Lond. B364, 2177–2185 (2009). CAS Google Scholar
Williams, T. A. et al. New substitution models for rooting phylogenetic trees. Phil. Trans. R. Soc. Lond. B370, 20140336 (2015). Google Scholar
Klopfstein, S., Vilhelmsen, L. & Ronquist, F. A nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol.64, 1089–1103 (2015). PubMedPubMed Central Google Scholar
Cherlin, S. et al. The effect of non-reversibility on inferring rooted phylogenies. Mol. Biol. Evol.35, 984–1002 (2018). CASPubMed Google Scholar
Tria, F. D. K., Landan, G. & Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol.1, 0193 (2017). Google Scholar
Szöllõsi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol.62, 901–912 (2013). PubMedPubMed Central Google Scholar
Timmis, J. N., Ayliffe, Ma, Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet.5, 123–135 (2004). CASPubMed Google Scholar
McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol.12, 449–455 (2014). CASPubMed Google Scholar
Brown, J. R. & Doolittle, W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl Acad. Sci. USA92, 2441–2445 (1995). CASPubMedPubMed Central Google Scholar
Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Ancient gene duplications and the root(s) of the tree of life. Protoplasma227, 53–64 (2005). PubMed Google Scholar
Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol.6, a016121 (2014). PubMedPubMed Central Google Scholar
Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology58, 5–17 (2015). Google Scholar
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA108, 13624–13629 (2011). CASPubMedPubMed Central Google Scholar
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol.4, 1138–1148 (2019). CASPubMed Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). CASPubMedPubMed Central Google Scholar
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol.10, 210 (2010). PubMedPubMed Central Google Scholar
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018). CASPubMed Google Scholar
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA114, E4602–E4611 (2017). CASPubMedPubMed Central Google Scholar