Cooking shapes the structure and function of the gut microbiome (original) (raw)
Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe17, 72–84 (2015). ArticleCASPubMed Google Scholar
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science332, 970–974 (2011). ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med.1, 6ra14 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559–563 (2014). ArticleCASPubMed Google Scholar
Carmody, R. N. & Wrangham, R. W. The energetic significance of cooking. J. Hum. Evol.57, 379–391 (2009). ArticlePubMed Google Scholar
Snow, P. & O’Dea, K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr.34, 2721–2727 (1981). ArticleCASPubMed Google Scholar
Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J.6, 1535 (2012). ArticleCASPubMedPubMed Central Google Scholar
Witte, W. Medical consequences of antibiotic use in agriculture. Science279, 996–997 (1998). ArticleCASPubMed Google Scholar
Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Proc. Natl Acad. Sci. USA108, 19199–19203 (2011). ArticleCASPubMedPubMed Central Google Scholar
Guan, Y., Wu, T., Lin, M. & Ye, J. Determination of pharmacologically active ingredients in sweet potato (Ipomoea batatas L.) by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem.54, 24–28 (2006). ArticleCASPubMed Google Scholar
Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol.33, 319–322 (1977). ArticleCASPubMedPubMed Central Google Scholar
Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol.9, e1001221 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sun, T., Laerke, H. N., Jorgenson, H. & Knudsen, K. E. B. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Technol.131, 66–85 (2006). ArticleCAS Google Scholar
Livesey, G. The impact of complex carbohydrates on energy balance. Eur. J. Clin. Nutr.49, 89S–96S (1995). Google Scholar
Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell152, 39–50 (2013). ArticleCASPubMedPubMed Central Google Scholar
Maurice, C. F. & Turnbaugh, P. J. Quantifying and identifying the active and damaged subsets of indigenous microbial communities. Methods Enzym.531, 91–107 (2013). ArticleCAS Google Scholar
Borges, A., Ferreira, C., Saavedra, M. J. & Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist.19, 256–265 (2013). ArticleCASPubMed Google Scholar
Lou, Z. et al. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control25, 550–554 (2012). ArticleCAS Google Scholar
Alves, M. J. et al. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol.115, 346–357 (2013). ArticleCASPubMed Google Scholar
Butaye, P., Devriese, L. A. & Haesebrouck, F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin. Microbiol. Rev.16, 175–188 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science328, 228–231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab.23, 324–334 (2016). ArticleCASPubMed Google Scholar
Perez-Burillo, S. et al. Effect of food thermal processing on the composition of the gut microbiota. J. Agric. Food Chem.66, 11500–11509 (2018). ArticleCASPubMed Google Scholar
Koppel, N., Maini Rekdal, V. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science356, eaag2770 (2017). ArticlePubMedCAS Google Scholar
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol.12, 1–18 (2011). Article Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw.82, 1–26 (2017). Article Google Scholar
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol.15, 1–17 (2014). ArticleCAS Google Scholar
Stein, S. E. & Scott, D. R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom.5, 859–866 (1994). ArticleCASPubMed Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J.6, 1621–1624 (2012). ArticleCASPubMedPubMed Central Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA108, 4516–4522 (2011). ArticleCASPubMed Google Scholar
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol.72, 5069–5072 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464 (2010). ArticleCASPubMed Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol.8, 2224 (2017). ArticlePubMedPubMed Central Google Scholar
Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife6, e21887 (2017). ArticlePubMedPubMed Central Google Scholar
Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J.7, 1–8 (2013). Article Google Scholar
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics28, 3211–3217 (2012). ArticleCASPubMed Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 525–527 (2016). ArticleCASPubMed Google Scholar
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res.36, D480–D484 (2008). ArticleCASPubMed Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods12, 59–60 (2015). ArticleCASPubMed Google Scholar
Strauber, H. & Muller, S. Viability states of bacteria: specific mechanisms of selected probes. Cytometry A77, 623–634 (2010). ArticlePubMedCAS Google Scholar
Bouvier, T., Del Giorgio, P. A. & Gasol, J. M. A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ. Microbiol.9, 2050–2066 (2007). ArticleCASPubMed Google Scholar
Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A. & Hagström, Å. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol.65, 4475–4483 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lebaron, P., Servais, P., Agogue, H., Courties, C. & Joux, F. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl. Environ. Microbiol.67, 1775–1782 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nayfach, S., Fischbach, M. A. & Pollard, K. S. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics31, 3368–3370 (2015). ArticleCASPubMedPubMed Central Google Scholar
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard 9th edn (Clinical and Laboratory Standards Institute, 2012).
Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc.5, 1005–1018 (2010). ArticleCASPubMed Google Scholar
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc.6, 1060–1083 (2011). ArticleCASPubMed Google Scholar
Ivanisevic, J. et al. Toward ‘omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal. Chem.85, 6876–6884 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mahieu, N. G., Spalding, J. L., Gelman, S. J. & Patti, G. J. Defining and detecting complex peak relationships in mass spectral data: the mz.unity algorithm. Anal. Chem.88, 9037–9046 (2016). ArticleCASPubMedPubMed Central Google Scholar
Bowen, B. P. & Northen, T. R. Dealing with the unknown: metabolomics and metabolite atlases. J. Am. Soc. Mass Spectrom.21, 1471–1476 (2010). ArticleCASPubMed Google Scholar
Katajamaa, M., Miettinen, J. & Orešič, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics22, 634–636 (2006). ArticleCASPubMed Google Scholar
Yao, Y. et al. Analysis of metabolomics datasets with high-performance computing and metabolite atlases. Metabolites5, 431–442 (2015). ArticleCASPubMedPubMed Central Google Scholar
Thevenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res.14, 3322–3335 (2015). ArticleCASPubMed Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).