New insights into KATP channel gene mutations and neonatal diabetes mellitus (original) (raw)
Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev.98, 117–214 (2018). ArticleCASPubMed Google Scholar
Flanagan, S. E. et al. Update of variants identified in the pancreatic β-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum. Mutat.https://doi.org/10.1002/humu.23995 (2020).
Martin, G. M. et al. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife6, e24149 (2017). ArticlePubMedPubMed Central Google Scholar
Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S.-L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by cryo-EM. Elife6, e31054 (2017). ArticlePubMedPubMed Central Google Scholar
Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell168, 101–110.e10 (2017). ArticleCASPubMed Google Scholar
Lee, K. P. K., Chen, J. & MacKinnon, R. Molecular structure of human KATP in complex with ATP and ADP. Elife6, e32481 (2017). ArticlePubMedPubMed Central Google Scholar
Wu, J.-X. et al. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein Cell9, 553–567 (2018). ArticleCASPubMedPubMed Central Google Scholar
Ding, D., Wang, M., Wu, J.-X., Kang, Y. & Chen, L. The structural basis for the binding of repaglinide to the pancreatic KATP channel. Cell Rep.27, 1848–1857.e4 (2019). ArticleCASPubMed Google Scholar
Martin, G. M. et al. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Elife8, e46417 (2019). ArticlePubMedPubMed Central Google Scholar
Puljung, M. C. Cryo-electron microscopy structures and progress toward a dynamic understanding of KATP channels. J. Gen. Physiol.150, 653–659 (2018). ArticleCASPubMedPubMed Central Google Scholar
Cook, D. L. & Hales, N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature311, 271–273 (1984). ArticleCASPubMed Google Scholar
Shyng, S. L. & Nichols, C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science282, 1138–1141 (1998). ArticleCASPubMed Google Scholar
Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science268, 423–426 (1995). ArticleCASPubMed Google Scholar
Nichols, C. G. et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science272, 1785–1787 (1996). ArticleCASPubMed Google Scholar
Mikhailov, M. V. et al. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J.24, 4166–4175 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S. & Ashcroft, F. M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature387, 179–183 (1997). ArticleCASPubMed Google Scholar
Hattersley, A. T. & Ashcroft, F. M. Activating mutations in Kir6.2 and neonatal diabetes mellitus: new clinical syndromes, new scientific insights, and new therapy. Diabetes54, 2503–2513 (2005). ArticleCASPubMed Google Scholar
Ashcroft, F. M. ATP-sensitive K+ channels and disease: from molecule to malady. Am. J. Physiol. Metab.293, E880–E889 (2007). CAS Google Scholar
Stanley, C. A. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders. J. Clin. Endocrinol. Metab.101, 815–826 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kakei, M., Noma, A. & Shibasaki, T. Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J. Physiol.363, 441–462 (1985). ArticleCASPubMedPubMed Central Google Scholar
Ashcroft, F. M. Adenosine 5’-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci.11, 97–118 (1988). ArticleCASPubMed Google Scholar
Dabrowski, M., Tarasov, A. & Ashcroft, F. M. Mapping the architecture of the ATP-binding site of the KATP channel subunit Kir6.2. J. Physiol.557, 347–354 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pratt, E. B., Zhou, Q., Gay, J. W. & Shyng, S.-L. Engineered interaction between SUR1 and Kir6.2 that enhances ATP sensitivity in KATP channels. J. Gen. Physiol.140, 175–187 (2012). ArticleCASPubMedPubMed Central Google Scholar
Masia, R. et al. An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes mellitus. Diabetes56, 328–336 (2007). ArticleCASPubMed Google Scholar
Shimomura, K. et al. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes mellitus produce different functional effects. Diabetes55, 1705–1712 (2006). ArticleCASPubMed Google Scholar
Männikkö, R. et al. Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes mellitus and neurological symptoms. Hum. Mol. Genet.19, 963–972 (2010). ArticlePubMedCAS Google Scholar
Proks, P. et al. Molecular basis of Kir6.2 mutations associated with neonatal diabetes mellitus or neonatal diabetes mellitus plus neurological features. Proc. Natl Acad. Sci. USA101, 17539–17544 (2004). ArticleCASPubMed Google Scholar
Shimomura, K. et al. Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes mellitus and hyperinsulinism. EMBO Mol. Med.1, 166–177 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tarasov, A. I. et al. Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes mellitus. Diabetes Obes. Metab.9, 46–55 (2007). ArticleCASPubMed Google Scholar
Girard, C. A. J. et al. Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes mellitus. Pflugers Arch.453, 323–332 (2006). ArticleCASPubMed Google Scholar
Enkvetchakul, D., Loussouran, G., Makhina, E., Shyng, S. L. & Nicjols, C. G. The kinetic and physical basis of KATP channel gating: toward a unified molecular understanding. Biophys. J.78, 2334–2348 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsuo, M., Kioka, N., Amachi, T. & Ueda, K. ATP binding properties of the nucleotide-binding folds of SUR1. J. Biol. Chem.274, 37479–37482 (1999). ArticleCASPubMed Google Scholar
Zingman, L. V. et al. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K-conductance. Neuron31, 233–245 (2001). ArticleCASPubMed Google Scholar
Puljung, M., Vedovato, N., Usher, S. & Ashcroft, F. Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding. Elife8, e41103 (2019). ArticlePubMedPubMed Central Google Scholar
Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med.355, 456–466 (2006). ArticleCASPubMed Google Scholar
de Wet, H. et al. A mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes mellitus. EMBO Rep.9, 648–654 (2008). ArticlePubMedCASPubMed Central Google Scholar
Proks, P., Shimomura, K., Craig, T. J., Girard, C. A. J. & Ashcroft, F. M. Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Hum. Mol. Genet.16, 2011–2019 (2007). ArticleCASPubMed Google Scholar
de Wet, H. et al. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes mellitus. Proc. Natl Acad. Sci. USA104, 18988–18992 (2007). ArticlePubMed Google Scholar
Männikkö, R. et al. Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes mellitus. Diabetes60, 1813–1822 (2011). ArticlePubMedCASPubMed Central Google Scholar
Zhou, Q. et al. Neonatal diabetes mellitus caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels. J. Clin. Endocrinol. Metab.95, E473–E478 (2010). ArticleCASPubMedPubMed Central Google Scholar
Koster, J. C., Kurata, H. T., Enkvetchakul, D. & Nichols, C. G. DEND mutation in Kir6.2 (KCNJ11) reveals a flexible N-terminal region critical for ATP-sensing of the KATP Channel. Biophys. J.95, 4689–4697 (2008). ArticleCASPubMedPubMed Central Google Scholar
Flanagan, S. E., Edghill, E. L., Gloyn, A. L., Ellard, S. & Hattersley, A. T. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia49, 1190–1197 (2006). ArticleCASPubMed Google Scholar
Flanagan, S. E. et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes mellitus and permanent diabetes in childhood or adulthood. Diabetes56, 1930–1937 (2007). ArticleCASPubMed Google Scholar
Russo, L. et al. Permanent diabetes during the first year of life: multiple gene screening in 54 patients. Diabetologia54, 1693–1701 (2011). ArticleCASPubMedPubMed Central Google Scholar
Iafusco, D. et al. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol.49, 405–408 (2012). ArticleCASPubMed Google Scholar
Grulich-Henn, J. et al. Entities and frequency of neonatal diabetes mellitus: data from the diabetes documentation and quality management system (DPV). Diabet. Med.27, 709–712 (2010). ArticleCASPubMed Google Scholar
Wiedemann, B. et al. Incidence of neonatal diabetes mellitus in Austria-calculation based on the Austrian diabetes register. Pediatr. Diabetes11, 18–23 (2010). ArticlePubMed Google Scholar
Habeb, A. M. et al. Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. Pediatr. Diabetes13, 499–505 (2012). ArticleCASPubMed Google Scholar
Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes mellitus. N. Engl. J. Med.350, 1838–1849 (2004). ArticleCASPubMed Google Scholar
Gloyn, A. L. et al. Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum. Mol. Genet.14, 925–934 (2005). ArticleCASPubMed Google Scholar
Tarasov, A. I. et al. A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults. Diabetes57, 1595–1604 (2008). ArticleCASPubMedPubMed Central Google Scholar
De Franco, E. et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes mellitus: an international cohort study. Lancet386, 957–963 (2015). ArticlePubMedPubMed Central Google Scholar
Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of the KATP channel-forming Kir6.2 subunit and the sulphonylurea receptor SUR1 in rodent brain. FEBS Lett.401, 59–64 (1997). ArticleCASPubMed Google Scholar
Clark, R. et al. Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes mellitus is neuronal in origin. Science329, 458–461 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vedovato, N. et al. Neonatal diabetes mellitus caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia59, 1430–1436 (2016). ArticleCASPubMedPubMed Central Google Scholar
Tarasov, A. I. et al. A Kir6.2 mutation causing neonatal diabetes mellitus impairs electrical activity and insulin secretion from INS-1 β-cells. Diabetes55, 3075–3082 (2006). ArticleCASPubMed Google Scholar
Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes52, 568–572 (2003). ArticleCASPubMed Google Scholar
Villareal, D. T. et al. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes58, 1869–1878 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hamming, K. S. C. et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11; E23K and ABCC8; S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes58, 2419–2424 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ashfield, R., Gribble, F. M., Ashcroft, S. J. & Ashcroft, F. M. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the KATP channel. Diabetes48, 1341–1347 (1999). ArticleCASPubMed Google Scholar
Dabrowski, M., Wahl, P., Holmes, W. E. & Ashcroft, F. M. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia44, 747–756 (2001). ArticleCASPubMed Google Scholar
Gribble, F. M., Tucker, S. J. & Ashcroft, F. M. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J. Physiol.504, 35–45 (1997). ArticleCASPubMedPubMed Central Google Scholar
Proks, P., de Wet, H. & Ashcroft, F. M. Molecular mechanism of sulphonylurea block of KATP channels carrying mutations that impair ATP inhibition and cause neonatal diabetes mellitus. Diabetes62, 3909–3919 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gloyn, A. L. et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes mellitus syndrome and other neurological features. Eur. J. Hum. Genet.14, 824–830 (2006). ArticleCASPubMed Google Scholar
Trapp, S., Proks, P., Tucker, S. J. & Ashcroft, F. M. Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP. J. Gen. Physiol.112, 333–349 (1998). ArticleCASPubMedPubMed Central Google Scholar
Proks, P. et al. A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome. EMBO Rep.6, 470–475 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gillis, K. D. et al. Effects of sulfonamides on a metabolite-regulated ATP-sensitive K+ channel in rat pancreatic B-cells. Am. J. Physiol.257, C1119–C1127 (1989). ArticleCASPubMed Google Scholar
Koster, J. C., Remedi, M. S., Dao, C. & Nichols, C. G. ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes mellitus: implications for pharmacogenomic therapy. Diabetes54, 2645–2654 (2005). ArticleCASPubMed Google Scholar
Pearson, E. R. et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med.355, 467–477 (2006). ArticleCASPubMed Google Scholar
Zung, A., Glaser, B., Nimri, R. & Zadik, Z. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J. Clin. Endocrinol. Metab.89, 5504–5507 (2004). ArticleCASPubMed Google Scholar
Bowman, P. et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes mellitus due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol.6, 637–646 (2018). ArticleCASPubMedPubMed Central Google Scholar
Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Invest.125, 4714–4728 (2015). ArticlePubMedPubMed Central Google Scholar
Kato, M., Ma, H. T. & Tatemoto, K. GLP-1 depolarizes the rat pancreatic beta cell in a Na+-dependent manner. Regul. Pept.62, 23–27 (1996). ArticleCASPubMed Google Scholar
Gromada, J. et al. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes47, 57–65 (1998). ArticleCASPubMed Google Scholar
Gromada, J., Ding, W. G., Barg, S., Renstrom, E. & Rorsman, P. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch.434, 515–524 (1997). ArticleCASPubMed Google Scholar
Babiker, T. et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes mellitus is determined by the mutation and duration of diabetes. Diabetologia59, 1162–1166 (2016). ArticleCASPubMedPubMed Central Google Scholar
Haythorne, E. et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat. Commun.10, 2474 (2019). ArticlePubMedPubMed Central Google Scholar
Brereton, M. F. et al. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nat. Commun.7, 13496 (2016). ArticleCASPubMedPubMed Central Google Scholar
Remedi, M. S. et al. Secondary consequences of β cell inexcitability: identification and prevention in a murine model of KATP-induced neonatal diabetes mellitus. Cell Metab.9, 140–151 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marshall, B. A. et al. Remission of severe neonatal diabetes mellitus with very early sulfonylurea treatment. Diabetes Care38, e38–e39 (2015). ArticlePubMedPubMed Central Google Scholar
Misra, S. et al. Permanent neonatal diabetes mellitus: combining sulfonylureas with insulin may be an effective treatment. Diabet. Med.35, 1291–1296 (2018). Article Google Scholar
Matthews, D. R., Cull, C. A., Stratton, I. M., Holman, R. R. & Turner, R. C. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabet. Med.15, 297–303 (1998). ArticleCASPubMed Google Scholar
Beltrand, J. et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes mellitus owing to potassium channel mutations. Diabetes Care38, 2033–2041 (2015). ArticleCASPubMed Google Scholar
Busiah, K. et al. Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study. Lancet Diabetes Endocrinol.1, 199–207 (2013). ArticleCASPubMed Google Scholar
Lahmann, C., Kramer, H. B. & Ashcroft, F. M. Systemic administration of glibenclamide fails to achieve therapeutic levels in the brain and cerebrospinal fluid of rodents. PLoS One10, e0134476 (2015). ArticlePubMedCASPubMed Central Google Scholar
Fendler, W. et al. Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion. Diabetes Care36, 2311–2316 (2013). ArticleCASPubMedPubMed Central Google Scholar
Myngheer, N. et al. Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11 related neonatal diabetes mellitus. Diabetes Care37, 3333–3335 (2014). ArticlePubMedPubMed Central Google Scholar
De Franco, E. et al. Analysis of cell-free fetal DNA for non-invasive prenatal diagnosis in a family with neonatal diabetes mellitus. Diabet. Med.34, 582–585 (2017). ArticlePubMedCAS Google Scholar
Alkorta-Aranburu, G. et al. Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol. Genet. Metab.113, 315–320 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia56, 2609–2618 (2013). ArticleCASPubMedPubMed Central Google Scholar
Craig, T. J. et al. An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes mellitus reveals a site of interaction between Kir6.2 and SUR1. J. Clin. Endocrinol. Metab.94, 2551–2557 (2009). ArticleCASPubMed Google Scholar
Proks, P., Girard, C., Baevre, H., Njølstad, P. R. & Ashcroft, F. M. Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes mellitus, and response to sulfonylurea therapy. Diabetes55, 1731–1737 (2006). ArticleCASPubMed Google Scholar
Vaxillaire, M. et al. Kir6.2 mutations are a common cause of permanent neonatal diabetes mellitus in a large cohort of French patients. Diabetes53, 2719–2722 (2004). ArticleCASPubMed Google Scholar
Zhang, M. et al. Sulfonylurea in the treatment of neonatal diabetes mellitus children with heterogeneous genetic backgrounds. J. Pediatr. Endocrinol. Metab.28, 877–884 (2015). CASPubMed Google Scholar
Yorifuji, T. et al. The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes mellitus, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.90, 3174–3178 (2005). ArticleCASPubMed Google Scholar
Hashimoto, Y. et al. Molecular and clinical features of KATP-channel neonatal diabetes mellitus in Japan. Pediatr. Diabetes18, 532–539 (2017). ArticleCASPubMed Google Scholar
Mlynarski, W. et al. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat. Clin. Pract. Neurol.3, 640 (2007). ArticleCASPubMed Google Scholar
Klupa, T. et al. Efficacy and safety of sulfonylurea use in permanent neonatal diabetes mellitus due to KCNJ11 gene mutations: 34-month median follow-up. Diabetes Technol. Ther.12, 387–391 (2010). ArticleCASPubMed Google Scholar
Bennett, J. T. et al. Molecular genetic testing of patients with monogenic diabetes and hyperinsulinism. Mol. Genet. Metab.114, 451–458 (2015). ArticleCASPubMed Google Scholar
Suzuki, S. et al. Molecular basis of neonatal diabetes mellitus in Japanese patients. J. Clin. Endocrinol. Metab.92, 3979–3985 (2007). ArticleCASPubMed Google Scholar
Fraser, C. S. et al. Amino acid properties may be useful in predicting clinical outcome in patients with Kir6.2 neonatal diabetes mellitus. Eur. J. Endocrinol.167, 417–421 (2012). ArticleCASPubMed Google Scholar
Massa, O. et al. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes mellitus. Hum. Mutat.25, 22–27 (2004). ArticleCAS Google Scholar
Tammaro, P., Proks, P. & Ashcroft, F. M. Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes mellitus on cloned cardiac KATP channels. J. Physiol.571, 3–14 (2006). ArticleCASPubMed Google Scholar
Huopio, H. et al. Clinical, genetic, and biochemical characteristics of early-onset diabetes in the Finnish population. J. Clin. Endocrinol. Metab.101, 3018–3026 (2016). ArticleCASPubMed Google Scholar
Koster, J. C. et al. The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes mellitus and motor dysfunction in adulthood that is improved with sulfonylurea therapy. J. Clin. Endocrinol. Metab.93, 1054–1061 (2008). ArticleCASPubMed Google Scholar
Khadilkar, V. V. et al. KCNJ11 activating mutation in an Indian family with remitting and relapsing diabetes. Indian J. Pediatr.77, 551–554 (2010). ArticleCASPubMed Google Scholar
Sachie, I. et al. DEND syndrome due to V59A mutation in KCNJ11 gene: unresponsive to sulfonylureas. J. Pediatric Endocrinol. Metab.26, 143 (2013). Google Scholar
Männikkö, R. et al. A conserved tryptophan at the membrane-water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes mellitus when mutated. J. Physiol.589, 3071–3083 (2011). ArticlePubMedCASPubMed Central Google Scholar
O’Connell, S. M. et al. The value of in vitro studies in a case of neonatal diabetes mellitus with a novel Kir6.2-W68G mutation. Clin. Case Rep.3, 884–887 (2015). ArticlePubMedPubMed Central Google Scholar
Tammaro, P. et al. A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes mellitus without the expected neurological complications. Diabetologia51, 802–810 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chang, W.-L. et al. A novel mutation of KCNJ11 gene in a patient with permanent neonatal diabetes mellitus. Diabetes Res. Clin. Pract.104, e29–e32 (2014). ArticleCASPubMed Google Scholar
Shimomura, K. et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology69, 1342–1349 (2007). ArticleCASPubMed Google Scholar
Shimomura, K. et al. The first clinical case of a mutation at residue K185 of Kir6.2 (KCNJ11): a major ATP-binding residue. Diabet. Med.27, 225–229 (2010). ArticleCASPubMed Google Scholar
Ahn, S. Y., Kim, G.-H. & Yoo, H.-W. Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation. Korean J. Pediatr.58, 309–312 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lin, Y.-W. et al. Functional characterization of a novel KCNJ11 in frame mutation-deletion associated with infancy-onset diabetes and a mild form of intermediate DEND: a battle between KATP gain of channel activity and loss of channel expression. PLoS One8, e63758 (2013). ArticleCASPubMedPubMed Central Google Scholar
Battaglia, D. et al. Glyburide ameliorates motor coordination and glucose homeostasis in a child with diabetes associated with the KCNJ11/S225T, del226-232 mutation. Pediatr. Diabetes13, 656–660 (2012). ArticlePubMedPubMed Central Google Scholar
D’Amato, E. et al. Variable phenotypic spectrum of diabetes mellitus in a family carrying a novel KCNJ11 gene mutation. Diabet. Med.25, 651–656 (2008). ArticlePubMedCAS Google Scholar
Bonnefond, A. et al. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care37, 460–467 (2014). ArticleCASPubMed Google Scholar
Joshi, R. & Phatarpekar, A. Neonatal diabetes mellitus due to L233F mutation in the KCNJ11 gene. World J. Pediatr.7, 371–372 (2011). ArticleCASPubMed Google Scholar
Jesic, M. M., Jesic, M. D., Maglajlic, S., Sajic, S. & Necic, S. Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a new KCNJ11 mutation. Diabetes Res. Clin. Pract.91, e1–e3 (2011). ArticleCASPubMed Google Scholar
Gole, E., Oikonomou, S., Ellard, S., De Franco, E. & Karavanaki, K. A novel KCNJ11 mutation associated with transient neonatal diabetes mellitus. J. Clin. Res. Pediatr. Endocrinol.10, 175–178 (2018). ArticlePubMedPubMed Central Google Scholar
Jahnavi, S. et al. Clinical and molecular characterization of neonatal diabetes mellitus and monogenic syndromic diabetes in Asian Indian children. Clin. Genet.83, 439–445 (2013). ArticleCASPubMed Google Scholar
Siklar, Z. et al. Transient neonatal diabetes mellitus with two novel mutations in the KCNJ11 gene and response to sulfonylurea treatment in a preterm infant. J. Pediatr. Endocrinol. Metab.24, 1077–1080 (2011). PubMed Google Scholar
Tammaro, P., Girard, C., Molnes, J., Njølstad, P. R. & Ashcroft, F. M. Kir6.2 mutations causing neonatal diabetes mellitus provide new insights into Kir6.2-SUR1 interactions. EMBO J.24, 2318–2330 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sagen, J. V. et al. Permanent neonatal diabetes mellitus due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes53, 2713–2718 (2004). ArticleCASPubMed Google Scholar
Philla, K. Q., Bauer, A. J., Vogt, K. S. & Greeley, S. A. W. Successful transition from insulin to sulfonylurea therapy in a patient with monogenic neonatal diabetes mellitus owing to a KCNJ11 F333L mutation. Diabetes Care36, e201 (2013). ArticlePubMedPubMed Central Google Scholar
Sang, Y., Yang, W., Yan, J. & Wu, Y. KCNJ11 gene mutation analysis on nine Chinese patients with type 1B diabetes diagnosed before 3 years of age. J. Pediatr. Endocrinol. Metab.27, 519–523 (2014). ArticleCASPubMed Google Scholar
Lin, Y.-W. et al. Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic KATP channels cause neonatal diabetes mellitus by perturbing the coupling between Kir6.2 and SUR1 subunits. Channels6, 133–138 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ellard, S. et al. Permanent neonatal diabetes mellitus caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am. J. Hum. Genet.81, 375–382 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rafiq, M. et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care31, 204–209 (2008). ArticleCASPubMed Google Scholar
Zwaveling-Soonawala, N. et al. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes mellitus (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia54, 469–471 (2011). ArticleCASPubMed Google Scholar
Globa, E. et al. Neonatal diabetes mellitus in Ukraine: incidence, genetics, clinical phenotype and treatment. J. Pediatr. Endocrinol. Metab.28, 1279–1286 (2015). ArticleCASPubMedPubMed Central Google Scholar
Shield, J. P. H. et al. Mosaic paternal uniparental isodisomy and an ABCC8 gene mutation in a patient with permanent neonatal diabetes mellitus and hemihypertrophy. Diabetes57, 255–258 (2008). ArticleCASPubMed Google Scholar
Gonsorcikova, L. et al. Familial mild hyperglycemia associated with a novel ABCC8-V84I mutation within three generations. Pediatr. Diabetes12, 266–269 (2011). ArticlePubMed Google Scholar
Busiah, K., Verkarre, V., Cave, H., Scharfmann, R. & Polak, M. Human pancreas endocrine cell populations and activating ABCC8 mutations. Horm. Res. Paediatr.82, 59–64 (2014). ArticleCASPubMed Google Scholar
Bowman, P. et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia55, 123–127 (2012). ArticleCASPubMed Google Scholar
Patch, A. M., Flanagan, S. E., Boustred, C., Hattersley, A. T. & Ellard, S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes mellitus, permanent neonatal diabetes mellitus or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes. Metab.9, 28–39 (2007). ArticleCASPubMed Google Scholar
Vaxillaire, M. et al. New ABCC8 mutations in relapsing neonatal diabetes mellitus and clinical features. Diabetes56, 1737–1741 (2007). ArticleCASPubMed Google Scholar
Cao, B. et al. Genetic analysis and follow-up of 25 neonatal diabetes mellitus patients in China. J. Diabetes Res.2016, 6314368 (2016). ArticlePubMedCAS Google Scholar
Balamurugan, K. et al. Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children. Pediatr. Diabetes20, 397–407 (2019). ArticleCASPubMed Google Scholar
Babenko, A. P. & Vaxillaire, M. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8). FEBS Lett.585, 3555–3559 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fanciullo, L. et al. Sulfonylurea-responsive neonatal diabetes mellitus diagnosed through molecular genetics in two children and in one adult after a long period of insulin treatment. Acta Biomed.83, 56–61 (2012). PubMed Google Scholar
Masia, R. et al. A mutation in the TMD0-L0 region of sulfonylurea receptor-1 (L225P) causes permanent neonatal diabetes mellitus (PNDM). Diabetes56, 1357–1362 (2007). ArticleCASPubMed Google Scholar
Takagi, M. et al. A case of transient neonatal diabetes mellitus due to a novel mutation in ABCC8. Clin. Pediatr. Endocrinol.25, 139–141 (2016). ArticlePubMedPubMed Central Google Scholar
Dalvi, N. N. H. et al. Genetically confirmed neonatal diabetes mellitus: a single centre experience. Indian J. Pediatr.84, 86–88 (2017). ArticlePubMed Google Scholar
Li, X. et al. Early transition from insulin to sulfonylureas in neonatal diabetes mellitus and follow-up: experience from China. Pediatr. Diabetes19, 251–258 (2018). ArticleCASPubMed Google Scholar
Anik, A. et al. A novel activating ABCC8 mutation underlying neonatal diabetes mellitus in an infant presenting with cerebral sinovenous thrombosis. J. Pediatr. Endocrinol. Metab.27, 533–537 (2014). CASPubMed Google Scholar
Demirbilek, H. et al. Clinical characteristics and molecular genetic analysis of 22 patients with neonatal diabetes mellitus from the south-eastern region of Turkey: predominance of non-KATP channel mutations. Eur. J. Endocrinol.172, 697–705 (2015). ArticleCASPubMedPubMed Central Google Scholar
Katanic, D. et al. A successful transition to sulfonylurea treatment in male infant with neonatal diabetes mellitus caused by the novel ABCC8 gene mutation and three years follow-up. Diabetes Res. Clin. Pract.129, 59–61 (2017). ArticleCASPubMedPubMed Central Google Scholar
Takeda, R. et al. A case of a Japanese patient with neonatal diabetes mellitus caused by a novel mutation in the ABCC8 gene and successfully controlled with oral glibenclamide. Clin. Pediatr. Endocrinol.24, 191–193 (2015). ArticlePubMedPubMed Central Google Scholar
Shima, K. R. et al. Heterogeneous nature of diabetes in a family with a gain-of-function mutation in the ATP-binding cassette subfamily C member 8 (ABCC8) gene. Endocr. J.65, 1055–1059 (2018). ArticleCASPubMed Google Scholar
Flanagan, S. E. et al. An ABCC8 nonsense mutation causing neonatal diabetes mellitus through altered transcript expression. J. Clin. Res. Pediatr. Endocrinol.9, 260–264 (2017). ArticlePubMedPubMed Central Google Scholar
Rubio-Cabezas, O., Flanagan, S. E., Damhuis, A., Hattersley, A. T. & Ellard, S. KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr. Diabetes13, 322–325 (2012). ArticleCASPubMed Google Scholar
Klee, P. et al. A novel ABCC8 mutation illustrates the variability of the diabetes phenotypes associated with a single mutation. Diabetes Metab.38, 179–182 (2012). ArticleCASPubMed Google Scholar
Chen, H., Chen, R., Yuan, X., Yang, X. & Chen, S. ABCC8 gene analysis, treatment and follow-up of an infant with neonatal diabetes mellitus. Zhonghua Yi Xue Yi Chuan Xue Za Zhi34, 571–575 (2017). PubMed Google Scholar
Mak, C. M. et al. Personalized medicine switching from insulin to sulfonylurea in permanent neonatal diabetes mellitus dictated by a novel activating ABCC8 mutation. Diagn. Mol. Pathol.21, 56–59 (2012). ArticleCASPubMed Google Scholar
Cattoni, A., Jackson, C., Bain, M., Houghton, J. & Wei, C. Phenotypic variability in two siblings with monogenic diabetes due to the same ABCC8 gene mutation. Pediatr. Diabetes20, 482–485 (2019). ArticleCASPubMed Google Scholar
Thakkar, A. N., Muranjan, M. N., Karande, S. & Shah, N. S. Neonatal diabetes mellitus due to a novel ABCC8 gene mutation mimicking an organic acidemia. Indian J. Pediatr.81, 702–704 (2014). ArticlePubMed Google Scholar
Poovazhagi, V. & Thangavelu, S. Relapsing transient neonatal diabetes mellitus due to ABCC8 mutation. J. Mol. Genet. Med.8, 136 (2014). Google Scholar
Christesen, H. B. T., Sjöblad, S., Brusgaard, K., Papadopoulou, D. & Brock Jacobsen, B. Permanent neonatal diabetes mellitus in a child with an ABCC8 gene mutation. European Society of Paediatrics (ESPE)/LWPES 7th joint meeting paediatric endocrinology, Lyon 22/9 2005. Horm. Res.64 (Suppl. 1), 135 (2005). Google Scholar
Vasanwala, R. F., Lim, S. H., Ellard, S. & Yap, F. Neonatal diabetes mellitus in a Singapore Children’s Hospital: molecular diagnoses of four cases. Ann. Acad. Med. Singap.43, 314–319 (2014). PubMed Google Scholar
Takagi, T. et al. Clinical and functional characterization of the Pro1198Leu ABCC8 gene mutation associated with permanent neonatal diabetes mellitus. J. Diabetes Investig.4, 269–273 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ganesh, R., Suresh, N., Vasanthi, T. & Ravikumar, K. G. Neonatal diabetes mellitus: a case series. Indian Pediatr.54, 33–36 (2017). ArticlePubMed Google Scholar
Ovsyannikova, A. K. et al. ABCC8-related maturity-onset diabetes of the young (MODY12): clinical features and treatment perspective. Diabetes Ther.7, 591–600 (2016). ArticleCASPubMedPubMed Central Google Scholar
Taberner, P. et al. Clinical and genetic features of Argentinian children with diabetes-onset before 12 months of age: successful transfer from insulin to oral sulfonylurea. Diabetes Res. Clin. Pract.117, 104–110 (2016). ArticleCASPubMed Google Scholar
Helleskov, A. et al. Both low blood glucose and insufficient treatment confer risk of neurodevelopmental impairment in congenital hyperinsulinism: a multinational cohort study. Front. Endocrinol.8, 156 (2017). Article Google Scholar
Yan, F.-F. et al. Congenital hyperinsulinism–associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels. Diabetes56, 2339–2348 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lin, Y.-W., MacMullen, C., Ganguly, A., Stanley, C. A. & Shyng, S.-L. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J. Biol. Chem.281, 3006–3012 (2006). ArticleCASPubMed Google Scholar
Stansfeld, P. J., Hopkinson, R., Ashcroft, F. M. & Sansom, M. S. P. PIP2-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry48, 10926–10933 (2009). ArticleCASPubMedPubMed Central Google Scholar
Haider, S., Tarasov, A. I., Craig, T. J., Sansom, M. S. P. & Ashcroft, F. M. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J.26, 3749–3759 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shyng, S. L., Cukras, C. A., Harwood, J. & Nichols, C. G. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J. Gen. Physiol.116, 599–608 (2000). ArticleCASPubMedPubMed Central Google Scholar