Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice (original) (raw)
International Diabetes Federation. IDF Diabetes Atlas 10th edn (IDF, 2021).
Franks, P. W. & Poveda, A. Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy? Diabetologia60, 784–792 (2017). ArticlePubMedPubMed Central Google Scholar
Chan, J. C. N. et al. The Lancet Commission on Diabetes: using data to transform diabetes care and patient lives. Lancet396, 2019–2082 (2021). ArticlePubMed Google Scholar
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet396, 1223–1249 (2020). Article Google Scholar
American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care41, 917–928 (2018). ArticlePubMed Central Google Scholar
Magliano, D. J., Martin, V. J., Owen, A. J., Zomer, E. & Liew, D. The productivity burden of diabetes at a population level. Diabetes Care41, 979–984 (2018). ArticlePubMed Google Scholar
Gregg, E. W., Hora, I. & Benoit, S. R. Resurgence in diabetes-related complications. JAMA321, 1867–1868 (2019). ArticlePubMed Google Scholar
Rossing, P. et al. Executive summary of the KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease: an update based on rapidly emerging new evidence. Kidney Int.102, 990–999 (2022). ArticlePubMed Google Scholar
Draznin, B. et al. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes-2022. Diabetes Care45, S46–S59 (2022). Article Google Scholar
Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA309, 71–82 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. H. et al. Underweight increases the risk of end-stage renal diseases for type 2 diabetes in Korean population: data from the national health insurance service health checkups 2009–2017. Diabetes Care43, 1118–1125 (2020). ArticleCASPubMed Google Scholar
Yokomichi, H. et al. All-cause and cardiovascular disease mortality in underweight patients with diabetic nephropathy: BioBank Japan cohort. J. Diabetes Investig.12, 1425–1429 (2021). ArticleCASPubMedPubMed Central Google Scholar
Di Angelantonio, E. et al. Association of cardiometabolic multimorbidity with mortality. JAMA314, 52–60 (2015). ArticlePubMed Google Scholar
Magliano, D. J. et al. Trends in all-cause mortality among people with diagnosed diabetes in high-income settings: a multicountry analysis of aggregate data. Lancet Diabetes Endocrinol.10, 112–119 (2022). ArticlePubMed Google Scholar
Harding, J. L., Pavkov, M. E., Gregg, E. W. & Burrows, N. R. Trends of nontraumatic lower-extremity amputation in end-stage renal disease and diabetes: United States, 2000–2015. Diabetes Care42, 1430–1435 (2019). ArticlePubMed Google Scholar
Ling, W. et al. Global trend of diabetes mortality attributed to vascular complications, 2000–2016. Cardiovasc. Diabetol.19, 182 (2020). ArticlePubMedPubMed Central Google Scholar
Wu, H. et al. Trends in diabetes-related complications in Hong Kong, 2001–2016: a retrospective cohort study. Cardiovasc. Diabetol.19, 60 (2020). ArticlePubMedPubMed Central Google Scholar
Ali, M. K., Pearson-Stuttard, J., Selvin, E. & Gregg, E. W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia65, 3–13 (2022). ArticlePubMed Google Scholar
Rawshani, A. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.379, 633–644 (2018). ArticlePubMed Google Scholar
Wu, H. et al. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001-2016: a retrospective cohort study. Diabetologia63, 757–766 (2020). ArticleCASPubMed Google Scholar
Norhammar, A. et al. Cost of healthcare utilization associated with incident cardiovascular and renal disease in individuals with type 2 diabetes: a multinational, observational study across 12 countries. Diabetes Obes. Metab.24, 1277–1287 (2022). ArticlePubMedPubMed Central Google Scholar
Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol.6, 361–369 (2018). ArticlePubMed Google Scholar
Xiong, X. F. et al. Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: a two-step cluster analysis. J. Diabetes Investig.12, 1346–1358 (2021). ArticleCASPubMedPubMed Central Google Scholar
Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. the Framingham study. JAMA241, 2035–2038 (1979). ArticleCASPubMed Google Scholar
American Diabetes Association Professional Practice Committee. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care45, S144–s174 (2022). Article Google Scholar
Poznyak, A. et al. The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci.21, 1835 (2020). ArticleCASPubMedPubMed Central Google Scholar
Creager, M. A., LüScher, T. F., Cosentino, F. & Beckman, J. A. Diabetes and vascular disease. Circulation108, 1527–1532 (2003). ArticlePubMed Google Scholar
Giugliano, D., Maiorino, M. I., Bellastella, G. & Esposito, K. The residual cardiorenal risk in type 2 diabetes. Cardiovasc. Diabetol.20, 36 (2021). ArticleCASPubMedPubMed Central Google Scholar
Giugliano, D., Maiorino, M. I., Bellastella, G. & Esposito, K. Glycemic control in type 2 diabetes: from medication nonadherence to residual vascular risk. Endocrine61, 23–27 (2018). ArticleCASPubMed Google Scholar
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med.373, 2117–2128 (2015). ArticleCASPubMed Google Scholar
Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.380, 347–357 (2019). ArticleCASPubMed Google Scholar
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med.377, 644–657 (2017). ArticleCASPubMed Google Scholar
Cherney, D. Z., Kanbay, M. & Lovshin, J. A. Renal physiology of glucose handling and therapeutic implications. Nephrol. Dial. Transplant.35 (Suppl. 1), i3–i12 (2020). ArticleCASPubMedPubMed Central Google Scholar
Kashiwagi, A. & Maegawa, H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J. Diabetes Investig.8, 416–427 (2017). ArticleCASPubMedPubMed Central Google Scholar
Thomas, M. C. & Cherney, D. Z. I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia61, 2098–2107 (2018). ArticleCASPubMed Google Scholar
Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care41, 356–363 (2018). ArticleCASPubMed Google Scholar
Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest.124, 499–508 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tomita, I. et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab.32, 404–419.e6 (2020). ArticleCASPubMed Google Scholar
Rosenstock, J. & Ferrannini, E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care38, 1638–1642 (2015). ArticleCASPubMed Google Scholar
Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab.24, 15–30 (2016). ArticleCASPubMed Google Scholar
Burgmaier, M. et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe-/- mice. Atherosclerosis231, 427–435 (2013). ArticleCASPubMed Google Scholar
Nyström, T. et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab.287, E1209–1215 (2004). ArticlePubMed Google Scholar
Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol.9, 653–662 (2021). ArticleCASPubMed Google Scholar
Joseph, J. J. et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation145, e722–e759 (2022). ArticlePubMed Google Scholar
Emdin, C. A. et al. Blood pressure lowering in type 2 diabetes. A systematic review and meta-analysis. JAMA313, 603–615 (2015). ArticlePubMed Google Scholar
Cushman, W. C. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med.362, 1575–1585 (2010). ArticlePubMed Google Scholar
Wright, J. T. Jr et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med.373, 2103–2116 (2015). ArticleCASPubMed Google Scholar
Buckley, L. F. et al. Effect of intensive blood pressure control in patients with type 2 diabetes mellitus over 9 years of follow-up: a subgroup analysis of high-risk ACCORDION trial participants. Diabetes Obes. Metab.20, 1499–1502 (2018). ArticleCASPubMed Google Scholar
Kearney, P. M. et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet371, 117–125 (2008). ArticleCASPubMed Google Scholar
Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet376, 1670–1681 (2010). ArticleCASPubMed Google Scholar
Giugliano, R. P. et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus. Circulation137, 1571–1582 (2018). ArticleCASPubMed Google Scholar
Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet366, 1849–1861 (2005); erratum 368, 1415 (2006).
Chew, E. Y. et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med.363, 233–244 (2010). ArticlePubMed Google Scholar
Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med.376, 1713–1722 (2017). ArticleCASPubMed Google Scholar
Sabatine, M. S. et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol.5, 941–950 (2017). ArticleCASPubMed Google Scholar
Ray, K. K. et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol.7, 618–628 (2019). ArticleCASPubMed Google Scholar
Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med.360, 129–139 (2009). ArticleCASPubMed Google Scholar
Reaven, P. D. et al. Intensive glucose control in patients with type 2 diabetes — 15-year follow-up. N. Engl. J. Med.380, 2215–2224 (2019). ArticleCASPubMedPubMed Central Google Scholar
Turnbull, F. M. et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia52, 2288–2298 (2009). ArticleCASPubMed Google Scholar
Barer, Y., Cohen, O. & Cukierman-Yaffe, T. Effect of glycaemic control on cardiovascular disease in individuals with type 2 diabetes with pre-existing cardiovascular disease: a systematic review and meta-analysis. Diabetes Obes. Metab.21, 732–735 (2019). ArticlePubMed Google Scholar
Wong, M. G., Heerspink, H. J. L. & Perkovic, V. ACCORDION: ensuring that we hear the music clearly. Clin. J. Am. Soc. Nephrol.13, 1621–1623 (2018). ArticlePubMedPubMed Central Google Scholar
Agrawal, L. et al. Long-term follow-up of intensive glycaemic control on renal outcomes in the Veterans Affairs Diabetes Trial (VADT). Diabetologia61, 295–299 (2018). ArticlePubMed Google Scholar
Wong, M. G. et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care39, 694–700 (2016). ArticleCASPubMed Google Scholar
Wyatt, C. M. & Cattran, D. C. Intensive glycemic control and the risk of end-stage renal disease: an ADVANCE in the management of diabetes? Kidney Int.90, 8–10 (2016). ArticlePubMed Google Scholar
Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med.359, 1577–1589 (2008). ArticleCASPubMed Google Scholar
Matthews, D. R. et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet394, 1519–1529 (2019). ArticleCASPubMed Google Scholar
Echouffo-Tcheugui, J. B. et al. Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: the ALLHAT study. Diabetes Care42, 486–493 (2019). ArticlePubMedPubMed Central Google Scholar
Ceriello, A. et al. HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target. Cardiovasc. Diabetol.21, 13 (2022). ArticleCASPubMedPubMed Central Google Scholar
Griffin, S. J., Leaver, J. K. & Irving, G. J. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia60, 1620–1629 (2017). ArticleCASPubMedPubMed Central Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet352, 854–865 (1998). Article Google Scholar
Chow, E., Yang, A., Chung, C. H. L. & Chan, J. C. N. A clinical perspective of the multifaceted mechanism of metformin in diabetes, infections, cognitive dysfunction, and cancer. Pharmaceuticals15, 442 (2022). ArticleCASPubMedPubMed Central Google Scholar
Yang, A. et al. Attenuated risk association of end-stage kidney disease with metformin in type 2 diabetes with eGFR categories 1-4. Pharmaceuticals15, 1140 (2022). ArticleCASPubMedPubMed Central Google Scholar
Hong, J. et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care36, 1304–1311 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bergmark, B. A. et al. Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction: observations from the SAVOR-TIMI 53 trial. Circulation140, 1004–1014 (2019). ArticleCASPubMed Google Scholar
White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med.369, 1327–1335 (2013). ArticleCASPubMed Google Scholar
Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med.369, 1317–1326 (2013). ArticleCASPubMed Google Scholar
Rosenstock, J. et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes. JAMA322, 1155 (2019). ArticleCASPubMedPubMed Central Google Scholar
Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.373, 232–242 (2015). ArticleCASPubMed Google Scholar
Rosenstock, J. et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk. JAMA321, 69 (2019). ArticleCASPubMed Google Scholar
Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med.373, 2247–2257 (2015). ArticleCASPubMed Google Scholar
Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.377, 1228–1239 (2017). ArticleCASPubMedPubMed Central Google Scholar
Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.381, 841–851 (2019). ArticleCASPubMed Google Scholar
Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.375, 1834–1844 (2016). ArticleCASPubMed Google Scholar
Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet394, 121–130 (2019). ArticleCASPubMed Google Scholar
Giugliano, D. et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc. Diabetol.20, 189 (2021). ArticleCASPubMedPubMed Central Google Scholar
Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol.6, 605–617 (2018). ArticleCASPubMed Google Scholar
Cannon, C. P. et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med.383, 1425–1435 (2020). ArticleCASPubMed Google Scholar
Kosiborod, M. et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J. Am. Coll. Cardiol.71, 2628–2639 (2018). ArticleCASPubMed Google Scholar
McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med.381, 1995–2008 (2019). ArticleCASPubMed Google Scholar
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med.387, 1089–1098 (2022). ArticlePubMed Google Scholar
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med.383, 1413–1424 (2020). ArticleCASPubMed Google Scholar
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med.385, 1451–1461 (2021). ArticleCASPubMed Google Scholar
Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med.28, 568–574 (2022). ArticleCASPubMedPubMed Central Google Scholar
Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N. Engl. J. Med.384, 117–128 (2021). ArticleCASPubMed Google Scholar
Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med.375, 323–334 (2016). ArticleCASPubMed Google Scholar
Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med.380, 2295–2306 (2019). ArticleCASPubMed Google Scholar
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med.383, 1436–1446 (2020). ArticleCASPubMed Google Scholar
Center for Drug Evaluation and Research. Guidance for industry: diabetes mellitus — evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes (CBER, 2008).
Cefalu, W. T. et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care41, 14–31 (2018). ArticleCASPubMed Google Scholar
Ke, C., Shah, B. R., Luk, A. O., Di Ruggiero, E. & Chan, J. C. N. Cardiovascular outcomes trials in type 2 diabetes: time to include young adults. Diabetes Obes. Metab.22, 3–5 (2020). ArticlePubMed Google Scholar
Jin, X. et al. Women’s participation in cardiovascular clinical trials from 2010 to 2017. Circulation141, 540–548 (2020). ArticlePubMed Google Scholar
Kidney Disease Improving Global Outcomes. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl.3, 1–150 (2013). Google Scholar
Levin, A. et al. International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney Int.98, 849–859 (2020). ArticlePubMed Google Scholar
Siew, E. D. et al. Timing of recovery from moderate to severe AKI and the risk for future loss of kidney function. Am. J. Kidney Dis.75, 204–213 (2020). ArticleCASPubMed Google Scholar
Ke, C., Narayan, K. M. V., Chan, J. C. N., Jha, P. & Shah, B. R. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat. Rev. Endocrinol.18, 413–432 (2022). ArticleCASPubMedPubMed Central Google Scholar
Draznin, B. et al. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care45, S144–S174 (2022). Article Google Scholar
Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care45, 2753–2786 (2022). ArticleCASPubMed Google Scholar
Cosentino, F. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J.41, 255–323 (2020). ArticlePubMed Google Scholar
Mahaffey, K. W. et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation137, 323–334 (2018). ArticleCASPubMedPubMed Central Google Scholar
Codina, P. et al. Head-to-head comparison of contemporary heart failure risk scores. Eur. J. Heart Fail.23, 2035–2044 (2021). ArticleCASPubMed Google Scholar
Shao, H. et al. Addressing regional differences in diabetes progression: global calibration for diabetes simulation model. Value Health22, 1402–1409 (2019). ArticlePubMedPubMed Central Google Scholar
Giorgino, F., Caruso, I., Moellmann, J. & Lehrke, M. Differential indication for SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with established atherosclerotic heart disease or at risk for congestive heart failure. Metabolism104, 154045 (2020). ArticleCASPubMed Google Scholar
Dave, C. V. et al. Risk of cardiovascular outcomes in patients with type 2 diabetes after addition of SGLT2 inhibitors versus sulfonylureas to baseline GLP-1RA therapy. Circulation143, 770–779 (2021). ArticleCASPubMed Google Scholar
Mancini, G. B. J. et al. 2022 Canadian Cardiovascular Society Guideline for use of GLP-1 receptor agonists and SGLT2 inhibitors for cardiorenal risk reduction in adults. Can. J. Cardiol.38, 1153–1167 (2022). ArticlePubMed Google Scholar
Draznin, B. et al. 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care45, S175–S184 (2022). Article Google Scholar
Birkeland, K. I. et al. How representative of a general type 2 diabetes population are patients included in cardiovascular outcome trials with SGLT2 inhibitors? A large European observational study. Diabetes Obes. Metab.21, 968–974 (2018). Article Google Scholar
So, W. Y. et al. Effects of protocol-driven care versus usual outpatient clinic care on survival rates in patients with type 2 diabetes. Am. J. Manag. Care9, 606–615 (2003). PubMed Google Scholar
Pressman, A., Avins, A. L., Neuhaus, J., Ackerson, L. & Rudd, P. Adherence to placebo and mortality in the beta blocker evaluation of survival trial (BEST). Contemp. Clin. Trials33, 492–498 (2012). ArticlePubMedPubMed Central Google Scholar
van den Driessen Mareeuw, F., Vaandrager, L., Klerkx, L., Naaldenberg, J. & Koelen, M. Beyond bridging the know-do gap: a qualitative study of systemic interaction to foster knowledge exchange in the public health sector in the Netherlands. BMC Public Health15, 922 (2015). ArticlePubMedPubMed Central Google Scholar
Hunter, D. J. Meeting the challenge of the “Know-Do” gap comment on “CIHR Health System Impact Fellows: Reflections on ‘Driving Change’ Within the Health System”. Int. J. Health Policy Manag.8, 498–500 (2019). ArticlePubMedPubMed Central Google Scholar
Kazemian, P., Shebl, F. M., McCann, N., Walensky, R. P. & Wexler, D. J. Evaluation of the cascade of diabetes care in the United States, 2005–2016. JAMA Intern. Med.179, 1376–1385 (2019). ArticlePubMedPubMed Central Google Scholar
Chan, J. C. N. et al. From Hong Kong diabetes register to JADE program to RAMP-DM for data-driven actions. Diabetes Care42, 2022–2031 (2019). ArticlePubMed Google Scholar
Van Spall, H. G. C., Fonarow, G. C. & Mamas, M. A. Underutilization of guideline-directed medical therapy in heart failure: can digital health technologies PROMPT change? J. Am. Coll. Cardiol.79, 2214–2218 (2022). ArticlePubMed Google Scholar
Nelson, A. J. et al. Gaps in evidence-based therapy use in insured patients in the United States with type 2 diabetes mellitus and atherosclerotic cardiovascular disease. J. Am. Heart Assoc.10, e016835 (2021). ArticleCASPubMedPubMed Central Google Scholar
Mosenzon, O. et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc. Diabetol.20, 154 (2021). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. C. What can we learn from the recent blood glucose lowering megatrials? J. Diabetes Investig.2, 1–5 (2011). ArticlePubMed Google Scholar
Eichler, H. G. et al. Bridging the efficacy-effectiveness gap: a regulator’s perspective on addressing variability of drug response. Nat. Rev. Drug Discov.10, 495–506 (2011). ArticleCASPubMed Google Scholar
Manne-Goehler, J. et al. Health system performance for people with diabetes in 28 low- and middle-income countries: a cross-sectional study of nationally representative surveys. PLoS Med.16, e1002751 (2019). ArticlePubMedPubMed Central Google Scholar
Lim, L. L. et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care41, 1312–1320 (2018). ArticlePubMedPubMed Central Google Scholar
Hoo, J. X. et al. Impact of multicomponent integrated care on mortality and hospitalization after acute coronary syndrome: a systematic review and meta-analysis. Eur. Heart J. Qual. Care Clin. Outcomeshttps://doi.org/10.1093/ehjqcco/qcac032 (2022). ArticlePubMed Google Scholar
Lim, L. L. et al. Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE Program: a retrospective cohort analysis. PLoS Med.17, e1003367 (2020). ArticlePubMedPubMed Central Google Scholar
Jiao, F. F. et al. Five-year cost-effectiveness of the multidisciplinary risk assessment and management programme-diabetes mellitus (RAMP-DM). Diabetes Care41, 250–257 (2018). ArticlePubMed Google Scholar
Wan, E. Y. F. et al. Five-year effectiveness of the multidisciplinary risk assessment and management programme-diabetes mellitus (RAMP-DM) on diabetes-related complications and health service uses-a population-based and propensity-matched cohort study. Diabetes Care41, 49–59 (2018). ArticlePubMed Google Scholar
Yeung, R. O. et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): a cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol.2, 935–943 (2014). ArticleCASPubMed Google Scholar
Ke, C. et al. Excess burden of mental illness and hospitalization in young-onset type 2 diabetes: a population-based cohort study. Ann. Intern. Med.170, 145–154 (2019). ArticlePubMed Google Scholar
Sattar, N. et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation139, 2228–2237 (2019). ArticlePubMed Google Scholar
Magliano, D. J. et al. Young-onset type 2 diabetes mellitus - implications for morbidity and mortality. Nat. Rev. Endocrinol.16, 321–331 (2020). ArticlePubMed Google Scholar
Lim, L. L. et al. Effects of a technology-assisted integrated diabetes care program on cardiometabolic risk factors among patients with type 2 diabetes in the Asia-Pacific Region: the JADE program randomized clinical trial. JAMA Netw. Open4, e217557 (2021). ArticlePubMedPubMed Central Google Scholar
Chan, J. C. N. et al. Effect of a web-based management guide on risk factors in patients with type 2 diabetes and diabetic kidney disease: a JADE randomized clinical trial. JAMA Netw. Open5, e223862 (2022). ArticlePubMedPubMed Central Google Scholar
Nauck, M. A., Wefers, J. & Meier, J. J. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol.9, 525–544 (2021). ArticleCASPubMed Google Scholar
Shah, N., Abdalla, M. A., Deshmukh, H. & Sathyapalan, T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther. Adv. Endocrinol. Metab.12, 20420188211042145 (2021). ArticleCASPubMedPubMed Central Google Scholar
Barrera-Chimal, J. & Jaisser, F. Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets. Diabetes Obes. Metab.22 (Suppl. 1), 16–31 (2020). ArticleCASPubMed Google Scholar
Zhou, G., Johansson, U., Peng, X. R., Bamberg, K. & Huang, Y. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am. J. Transl. Res.8, 1339–1354 (2016). CASPubMedPubMed Central Google Scholar
Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med.383, 2219–2229 (2020). ArticleCASPubMed Google Scholar
Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med.385, 2252–2263 (2021). ArticleCASPubMed Google Scholar
Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med.384, 989 (2021). ArticleCASPubMed Google Scholar
Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet394, 131–138 (2019). ArticleCASPubMed Google Scholar
Samms, R. J., Coghlan, M. P. & Sloop, K. W. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol. Metab.31, 410–421 (2020). ArticleCASPubMed Google Scholar
Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl Med.5, 209ra151 (2013). ArticlePubMed Google Scholar
Samms, R. J. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Invest.131, e146353 (2021). ArticleCASPubMedPubMed Central Google Scholar
Adriaenssens, A. E. et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab.30, 987–996.e6 (2019). ArticleCASPubMedPubMed Central Google Scholar
Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med.387, 205–216 (2022). ArticleCASPubMed Google Scholar
Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med.385, 503–515 (2021). ArticlePubMed Google Scholar
Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet392, 1519–1529 (2018). ArticleCASPubMed Google Scholar
Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med.385, 896–907 (2021). ArticleCASPubMed Google Scholar
Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med.384, 129–139 (2021). ArticleCASPubMed Google Scholar