Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol.5, 536–544 (2020). ArticleCAS Google Scholar
Pung, R. et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet395, 1039–1046 (2020). ArticleCASPubMedPubMed Central Google Scholar
Li, Q. et al. Early transmission dynamics in Wuhan, China, of Novel Coronavirus-infected pneumonia. N. Engl. J. Med.382, 1199–1207 (2020). ArticleCASPubMedPubMed Central Google Scholar
Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet395, 514–523 (2020). ArticleCASPubMedPubMed Central Google Scholar
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395, 497–506 (2020). This prospective study is the earliest to include an analysis of cytokine levels in severe and mild COVID-19, showing the presence of a cytokine storm analogous to that found for SARS-CoV infection. ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci.63, 364–374 (2020). ArticleCASPubMedPubMed Central Google Scholar
Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet395, 507–513 (2020). ArticleCASPubMedPubMed Central Google Scholar
Phan, L. T. et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N. Engl. J. Med.382, 872–874 (2020). ArticlePubMedPubMed Central Google Scholar
Zou, L. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med.382, 1177–1179 (2020). ArticlePubMedPubMed Central Google Scholar
Peiris, J. S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet361, 1767–1772 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA323, 1061–1069 (2020). ArticleCASPubMedPubMed Central Google Scholar
Wong, C. K. et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol.136, 95–103 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chu, K. H. et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int.67, 698–705 (2005). ArticlePubMedPubMed Central Google Scholar
Jia, H. P. et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol.79, 14614–14621 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol.203, 631–637 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Preprint at bioRxivhttps://doi.org/10.1101/2020.01.26.919985 (2020).
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cellhttps://doi.org/10.1016/j.cell.2020.02.058 (2020). Together with Wrapp et al. (2020), this article presents a cryo-electron microscopy structure of the SARS-CoV-2 spike glycoprotein used for cell entry, including an analysis of its receptor-binding kinetics and antigenicity with respect to SARS-CoV. ArticlePubMedPubMed Central Google Scholar
Imai, Y., Kuba, K. & Penninger, J. M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Physiol.93, 543–548 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med.11, 875–879 (2005). ArticleCASPubMedPubMed Central Google Scholar
Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin. J. Epidemiol.41, 145–151 (2020). Google Scholar
Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, K. & Dimitrov, D. S. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun.312, 1159–1164 (2003). ArticleCASPubMedPubMed Central Google Scholar
Babcock, G. J., Esshaki, D. J., Thomas, W. D. Jr. & Ambrosino, D. M. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J. Virol.78, 4552–4560 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wong, S. K., Li, W., Moore, M. J., Choe, H. & Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem.279, 3197–3201 (2004). ArticleCASPubMed Google Scholar
Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl Acad. Sci. USA102, 11876–11881 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bosch, B. J. et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl Acad. Sci. USA101, 8455–8460 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet363, 938–947 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y., Guo, Y., Pan, Y. & Zhao, Z. J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun.525, 135–140 (2020). ArticleCASPubMed Central Google Scholar
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science367, 1260–1263 (2020). Together with Walls et al. (2020), this article presents a high-resolution cryo-electron microscopy structure of the SARS-CoV-2 spike glycoprotein used for cell entry, including an analysis of its receptor-binding kinetics with respect to SARS-CoV. ArticleCASPubMedPubMed Central Google Scholar
Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res.176, 104742 (2020). ArticleCASPubMed Google Scholar
Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.30, 269–271 (2020). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother.60, 6532–6539 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Penninger, J. M., Li, Y., Zhong, N. & Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med.46, 586–590 (2020). ArticleCASPubMedPubMed Central Google Scholar
Chen, I. Y., Moriyama, M., Chang, M. F. & Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol.10, 50 (2019). ArticlePubMedPubMed Central Google Scholar
Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun.73, 1907–1916 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, K. J. et al. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol.75, 185–194 (2005). ArticleCASPubMed Google Scholar
Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med.8, 420–422 (2020). This study is the first to describe pathological findings in severe COVID-19 and demonstrates the aberrant immune cell infiltrates found in the lung. ArticleCASPubMedPubMed Central Google Scholar
Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet395, 1054–1062 (2020). ArticleCASPubMedPubMed Central Google Scholar
Liao, M. et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. Preprint at medRxivhttps://doi.org/10.1101/2020.02.23.20026690 (2020).
Siu, K. L., Chan, C. P., Kok, K. H., Chiu-Yat Woo, P. & Jin, D. Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell. Mol. Immunol.11, 141–149 (2014). ArticleCASPubMedPubMed Central Google Scholar
Versteeg, G. A., Bredenbeek, P. J., van den Worm, S. H. & Spaan, W. J. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology361, 18–26 (2007). ArticleCASPubMed Google Scholar
Sun, L. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One7, e30802 (2012). ArticleCASPubMedPubMed Central Google Scholar
Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol.83, 6689–6705 (2009). ArticleCASPubMedPubMed Central Google Scholar
Frieman, M. et al. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol.81, 9812–9824 (2007). ArticleCASPubMedPubMed Central Google Scholar
Narayanan, K. et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol.82, 4471–4479 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhao, J., Zhao, J., Legge, K. & Perlman, S. Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J. Clin. Invest.121, 4921–4930 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gu, J. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med.202, 415–424 (2005). This article describes the presence of SARS-CoV viral particles and RNA in T cells, monocytes and macrophages, suggesting that SARS-CoV and potentially SARS-CoV-2 may drive immunopathogenesis by direct infection of immune cells. ArticleCASPubMedPubMed Central Google Scholar
Cheung, C. Y. et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol.79, 7819–7826 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yilla, M. et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res.107, 93–101 (2005). ArticleCASPubMed Google Scholar
Tseng, C. T., Perrone, L. A., Zhu, H., Makino, S. & Peters, C. J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol.174, 7977–7985 (2005). ArticleCASPubMed Google Scholar
Law, H. K. et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood106, 2366–2374 (2005). ArticleCASPubMed Google Scholar
Shukla, A. M. & Wagle Shukla, A. Expanding horizons for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context.8, 2019-9-1 (2019). ArticlePubMedPubMed Central Google Scholar
Wong, R. S. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ326, 1358–1362 (2003). ArticlePubMedPubMed Central Google Scholar
Cui, W. et al. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis.37, 857–859 (2003). ArticlePubMed Google Scholar
Li, T. et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis.189, 648–651 (2004). ArticlePubMed Google Scholar
Zheng, H.-Y. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol.https://doi.org/10.1038/s41423-020-0401-3 (2020). This article examines the immune states of patients with severe or mild COVID-19 and shows reduced T cell functional diversity in severe COVID-19, supporting a role for T cell function in controlling COVID-19. ArticlePubMedPubMed Central Google Scholar
Libraty, D. H., O’Neil, K. M., Baker, L. M., Acosta, L. P. & Olveda, R. M. Human CD4+ memory T-lymphocyte responses to SARS coronavirus infection. Virology368, 317–321 (2007). ArticleCASPubMed Google Scholar
Yang, L. T. et al. Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin. Immunol.120, 171–178 (2006). ArticleCASPubMedPubMed Central Google Scholar
Oh, H. L. J., Gan, K.-E. S., Bertoletti, A. & Tan, Y. J. Understanding the T cell immune response in SARS coronavirus infection. Emerg. Microbes. Infect.1, e23 (2012). CAS Google Scholar
Shin, H. S. et al. Immune responses to Middle East respiratory syndrome coronavirus during the acute and convalescent phases of human infection. Clin. Infect. Dis.68, 984–992 (2019). ArticleCASPubMed Google Scholar
Chen, J. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol.84, 1289–1301 (2010). ArticleCASPubMed Google Scholar
Zhao, J., Zhao, J. & Perlman, S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J. Virol.84, 9318–9325 (2010). ArticleCASPubMedPubMed Central Google Scholar
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med.3, e525 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Yasui, F. et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J. Immunol.181, 6337–6348 (2008). ArticleCASPubMed Google Scholar
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol.85, 12201–12215 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tan, Y. J. et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin. Diagn. Lab. Immunol.11, 362–371 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, H. S. et al. Early detection of antibodies against various structural proteins of the SARS-associated coronavirus in SARS patients. J. Biomed. Sci.11, 117–126 (2004). ArticleCASPubMed Google Scholar
Nie, Y. et al. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis.190, 1119–1126 (2004). ArticlePubMed Google Scholar
Temperton, N. J. et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg. Infect. Dis.11, 411–416 (2005). ArticlePubMedPubMed Central Google Scholar
Cheng, Y. et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis.24, 44–46 (2005). ArticleCASPubMed Google Scholar
Soo, Y. O. et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect.10, 676–678 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yeh, K. M. et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother.56, 919–922 (2005). ArticleCASPubMed Google Scholar
Zhu, Z. et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc. Natl Acad. Sci. USA104, 12123–12128 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect.9, 382–385 (2020). ArticleCASPubMedPubMed Central Google Scholar
Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science309, 1864–1868 (2005). ArticleCASPubMed Google Scholar
Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunologyhttps://doi.org/10.1038/s41423-020-0400-4 (2020). Article Google Scholar
Li, X. Y. et al. The keypoints in treatment of the critical coronavirus disease 2019 patient. Chin. J. Tuberculosis Respir. Dis.43, E026 (2020). Google Scholar
Johnson, R. F. et al. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology490, 49–58 (2016). ArticleCASPubMed Google Scholar
Berry, J. D. et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs2, 53–66 (2010). This article shows the immunodominance of neutralizing epitopes on the RBD for SARS-CoV, suggesting the feasibility of a recombinant antigen strategy focused on the RBD for vaccination against COVID-19. ArticlePubMedPubMed Central Google Scholar
Qiu, M. et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect.7, 882–889 (2005). ArticleCASPubMedPubMed Central Google Scholar
GISAID. Receptor binding surveillance for high quality genomes. GISAIDhttps://www.gisaid.org/ (2020).
Kleine-Weber, H. et al. Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization. J. Virol.93, e01381-18 (2019). ArticlePubMedPubMed Central Google Scholar
Rockx, B. et al. Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. J. Infect. Dis.201, 946–955 (2010). ArticleCASPubMed Google Scholar
Yang, Z. Y. et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl. Acad. Sci. USA102, 797–801 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J. Med. Virol.78, 1–8 (2006). ArticleCASPubMed Google Scholar
Arabi, Y. M. et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg. Infect. Dis.22, 1554 (2016). ArticleCASPubMedPubMed Central Google Scholar
Drosten, C. et al. Transmission of MERS-coronavirus in household contacts. N. Engl. J. Med.371, 828–835 (2014). ArticlePubMedCAS Google Scholar
Park, W. B. et al. Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea. Emerg. Infect. Dis.21, 2186–2189 (2015). ArticleCASPubMedPubMed Central Google Scholar
Nimmerjahn, F. & Ravetch, J. V. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol.8, 34–47 (2008). ArticleCASPubMed Google Scholar
Bournazos, S., DiLillo, D. J. & Ravetch, J. V. The role of Fc-FcgammaR interactions in IgG-mediated microbial neutralization. J. Exp. Med.212, 1361–1369 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science313, 670–673 (2006). ArticleCASPubMed Google Scholar
Prabakaran, P. et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem.281, 15829–15836 (2006). ArticleCASPubMed Google Scholar