Resolving the gravitational redshift across a millimetre-scale atomic sample (original) (raw)
Einstein, A. Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Preuss. Akad. der Wissenschaften, Sitzungsberichte315, 778–786 (1915).
Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science329, 1630–1633 (2010). ArticleADSCASPubMed Google Scholar
Herrmann, S. et al. Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Phys. Rev. Lett.121, 231102 (2018). ArticleADSCASPubMed Google Scholar
Delva, P. et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett.121, 231101 (2018). ArticleADSCASPubMed Google Scholar
Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science358, 90–94 (2017). ArticleADSCASPubMed Google Scholar
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon.13, 714–719 (2019). ArticleADSCAS Google Scholar
Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun.6, 6896 (2015). ArticleADSCASPubMed Google Scholar
McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature564, 87–90 (2018). ArticleADSCASPubMed Google Scholar
Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett.123, 33201 (2019). ArticleADSCAS Google Scholar
Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia56, 065004 (2019). ArticleADSCAS Google Scholar
Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett.120, 103201 (2018). ArticleADSCASPubMed Google Scholar
Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature588, 414–418 (2020). ArticleADSPubMed Google Scholar
Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett.123, 260505 (2019). ArticleADSCASPubMed Google Scholar
Kómár, P. et al. Quantum network of atom clocks: a possible implementation with neutral atoms. Phys. Rev. Lett.117, 060506 (2016). ArticleADSPubMed Google Scholar
Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature588, 408–413 (2020). ArticleADSCASPubMed Google Scholar
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys.90, 25008 (2018). ArticleMathSciNetCAS Google Scholar
Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett.125, 201302 (2020). ArticleADSCASPubMed Google Scholar
Boulder Atomic Clock Optical Network. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature591, 564–569 (2021). ArticleADS Google Scholar
Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D94, 124043 (2016). ArticleADS Google Scholar
Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon.14, 411–415 (2020). ArticleADSCAS Google Scholar
Laurent, P., Massonnet, D., Cacciapuoti, L. & Salomon, C. The ACES/PHARAO space mission. C. R. Phys.16, 540–552 (2015). ArticleCAS Google Scholar
Tino, G. M. et al. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D73, 228 (2019). ArticleADSCAS Google Scholar
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys.14, 437–441 (2018). ArticleCAS Google Scholar
Flechtner, F., Sneeuw, N. & Schuh, W.-D. (eds) Observation of the System Earth from Space: CHAMP, GRACE, GOCE and Future Missions (Springer, 2014).
Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature542, 66–70 (2017). ArticleADSCASPubMed Google Scholar
Bromley, S. L. et al. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nat. Phys.14, 399–404 (2018). ArticleCAS Google Scholar
Wilkinson, S. R., Bharucha, C. F., Madison, K. W., Niu, Q. & Raizen, M. G. Observation of atomic Wannier–Stark ladders in an accelerating optical potential. Phys. Rev. Lett.76, 4512–4515 (1996). ArticleADSCASPubMed Google Scholar
Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A72, 1–8 (2005). Article Google Scholar
Aeppli, A. et al. Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock. Preprint at https://arxiv.org/abs/2201.05909 (2022).
Muniz, J. A., Young, D. J., Cline, J. R. K. & Thompson, J. K. Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth. Phys. Rev. Res.3, 023152 (2021). ArticleCAS Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys.87, 637–701 (2015). ArticleADSCAS Google Scholar
Lemonde, P., Brusch, A., Targat, R. L., Baillard, X. & Fouche, M. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett.96, 103003 (2006). ArticleADSPubMed Google Scholar
Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control59, 411–415 (2012). ArticlePubMed Google Scholar
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys.75, 281–324 (2003). ArticleADSCAS Google Scholar
Boyd, M. M. et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. A76, 022510 (2007). ArticleADS Google Scholar