Clinical use of current polygenic risk scores may exacerbate health disparities (original) (raw)
Knowles, J. W. & Ashley, E. A. Cardiovascular disease: the rise of the genetic risk score. PLoS Med.15, e1002546–e1002547 (2018). PubMedPubMed Central Google Scholar
Maas, P. et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol.2, 1295–1302 (2016). PubMedPubMed Central Google Scholar
Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet.50, 928–936 (2018). CASPubMedPubMed Central Google Scholar
Sharp, S. A. et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. Diabetes Care42, 200–207 (2019). CASPubMedPubMed Central Google Scholar
Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet.50, 1219–1224 (2018). CASPubMedPubMed Central Google Scholar
Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation133, 1181–1188 (2016). PubMedPubMed Central Google Scholar
Natarajan, P. et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation135, 2091–2101 (2017). PubMedPubMed Central Google Scholar
Paquette, M. et al. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol.11, 725–732.e5 (2017). PubMed Google Scholar
Tikkanen, E., Havulinna, A. S., Palotie, A., Salomaa, V. & Ripatti, S. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler. Thromb. Vasc. Biol.33, 2261–2266 (2013). CASPubMedPubMed Central Google Scholar
Frieser, M. J., Wilson, S. & Vrieze, S. Behavioral impact of return of genetic test results for complex disease: systematic review and meta-analysis. Health Psychol.37, 1134–1144 (2018). PubMedPubMed Central Google Scholar
Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med.375, 2349–2358 (2016). CASPubMedPubMed Central Google Scholar
Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet.18, 331–344 (2017). CASPubMedPubMed Central Google Scholar
Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet.100, 635–649 (2017). CASPubMedPubMed Central Google Scholar
Scutari, M., Mackay, I. & Balding, D. Using genetic distance to infer the accuracy of genomic prediction. PLoS Genet.12, e1006288 (2016). PubMedPubMed Central Google Scholar
Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet.97, 576–592 (2015). PubMedPubMed Central Google Scholar
Curtis, D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatr. Genet.28, 85–89 (2018). PubMed Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature511, 421–427 (2014). PubMed Central Google Scholar
Belsky, D. W. et al. Development and evaluation of a genetic risk score for obesity. Biodemography Soc. Biol.59, 85–100 (2013). PubMed Google Scholar
Domingue, B. W., Belsky, D., Conley, D., Harris, K. M. & Boardman, J. D. Polygenic influence on educational attainment: new evidence from The National Longitudinal Study of Adolescent to Adult Health. AERA Open1, 1–13 (2015). PubMedPubMed Central Google Scholar
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet.50, 1112–1121 (2018). CASPubMedPubMed Central Google Scholar
Vassos, E. et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol. Psychiatry81, 470–477 (2017). PubMed Google Scholar
Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet.49, 1458–1467 (2017). CASPubMed Google Scholar
Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet.49, 1576–1583 (2017). CASPubMed Google Scholar
Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet.25, 489–494 (2009). CASPubMed Google Scholar
Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol.19, 21 (2018). PubMedPubMed Central Google Scholar
Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev. Genet.11, 356–366 (2010). CASPubMedPubMed Central Google Scholar
Sham, P. C., Cherny, S. S., Purcell, S. & Hewitt, J. K. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet.66, 1616–1630 (2000). CASPubMedPubMed Central Google Scholar
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature526, 68–74 (2015). Google Scholar
Williams, A. L. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature506, 97–101 (2014). CASPubMed Google Scholar
Estrada, K. et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA311, 2305–2314 (2014). PubMed Google Scholar
Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet.43, 570–573 (2011). CASPubMedPubMed Central Google Scholar
Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science329, 841–845 (2010). CASPubMedPubMed Central Google Scholar
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet.47, 979–986 (2015). CASPubMedPubMed Central Google Scholar
Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol.11, e1001661 (2013). CASPubMedPubMed Central Google Scholar
Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447, 1087–1093 (2007). CASPubMedPubMed Central Google Scholar
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet.46, 234–244 (2014). Google Scholar
Waters, K. M. et al. Consistent association of type 2 diabetes risk variants found in europeans in diverse racial and ethnic groups. PLoS Genet.6, e1001078–e1001079 (2010). PubMedPubMed Central Google Scholar
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet.48, 1279–1283 (2016). CASPubMedPubMed Central Google Scholar
Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature547, 173–178 (2017). CASPubMedPubMed Central Google Scholar
Sohail, M. et al. Signals of polygenic adaptation on height have been overestimated due to uncorrected population structure in genome-wide association studies. Preprint at https://www.biorxiv.org/content/10.1101/355057v3 (2018).
Novembre, J. & Barton, N. H. Tread lightly interpreting polygenic tests of selection. Genetics208, 1351–1355 (2018). PubMedPubMed Central Google Scholar
Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet.16, 333–343 (2015). CASPubMedPubMed Central Google Scholar
Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet.99, 76–88 (2016). CASPubMedPubMed Central Google Scholar
Galinsky, K. J. et al. Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol.43, 180–188 (2019). PubMed Google Scholar
Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet.131, 725–737 (2012). CASPubMed Google Scholar
Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet.96, 377–385 (2015). CASPubMedPubMed Central Google Scholar
Paré, G., Mao, S. & Deng, W. Q. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep.7, 12665 (2017). PubMedPubMed Central Google Scholar
Martin, A. R. et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell171, 1340–1353.e14 (2017). CASPubMedPubMed Central Google Scholar
Duncan, L. E. et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry23, 666–673 (2018). CASPubMed Google Scholar
H3Africa Consortium. et al. Enabling the genomic revolution in Africa. Science344, 1346–1348 (2014). Google Scholar
Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet.19, 175–185 (2018). CASPubMed Google Scholar
Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet.50, 390–400 (2018). CASPubMed Google Scholar
Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol.186, 1026–1034 (2017). PubMedPubMed Central Google Scholar
Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell175, 347–359.e14 (2018). CASPubMed Google Scholar
Wray, N. R. et al. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry55, 1068–1087 (2014). PubMed Google Scholar
Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet.19, 581–590 (2018). CASPubMed Google Scholar
Manrai, A. K., Patel, C. J. & Ioannidis, J. P. A. In the era of precision medicine and big data, who is normal? JAMA319, 1981–1982 (2018). PubMedPubMed Central Google Scholar
Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov.12, 581–594 (2013). CASPubMed Google Scholar
Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA308, 1545–1554 (2012). CASPubMed Google Scholar
Rappoport, N. et al. Comparing ethnicity-specific reference intervals for clinical laboratory tests from EHR data. J. Appl. Lab. Med.3, 366–377 (2018). PubMed Google Scholar
Lim, E., Miyamura, J. & Chen, J. J. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawaii J. Med. Public Health74, 302–310 (2015). PubMedPubMed Central Google Scholar
Hero, J. O., Zaslavsky, A. M. & Blendon, R. J. The United States leads other nations in differences by income in perceptions of health and health care. Health Aff. (Millwood)36, 1032–1040 (2017). Google Scholar
Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol.35, 407–411 (2016). PubMedPubMed Central Google Scholar
Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet.44, 631–635 (2012). CASPubMedPubMed Central Google Scholar
Martin, A. R., Teferra, S., Möller, M., Hoal, E. G. & Daly, M. J. The critical needs and challenges for genetic architecture studies in Africa. Curr. Opin. Genet. Dev.53, 113–120 (2018). CASPubMedPubMed Central Google Scholar
Coles, E. & Mensah, G. A. Geography of genetics and genomics research funding in Africa. Glob. Heart12, 173–176 (2017). PubMed Google Scholar
Mulder, N. J. et al. Development of bioinformatics infrastructure for genomics research. Glob. Heart12, 91–98 (2017). PubMed Google Scholar
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res.45, D896–D901 (2017). CASPubMed Google Scholar