Software tools for automated transmission electron microscopy (original) (raw)
References
Winey, M., Meehl, J. B., O’Toole, E. T. & Giddings, T. H. Jr. Conventional transmission electron microscopy. Mol. Biol. Cell25, 319–323 (2014). Article Google Scholar
McMullan, G., Faruqi, A. R. & Henderson, R. Direct electron detectors. Methods Enzymol.579, 1–17 (2016). ArticleCAS Google Scholar
Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc.12, 209–212 (2017). ArticleCAS Google Scholar
Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A. & Olivo-Marin, J.-C. Imagining the future of bioimage analysis. Nat. Biotechnol.34, 1250–1255 (2016). ArticleCAS Google Scholar
Kreshuk, A., Koethe, U., Pax, E., Bock, D. D. & Hamprecht, F. A. Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One9, e87351 (2014). Article Google Scholar
Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics33, 2424–2426 (2017). ArticleCAS Google Scholar
Conrad, C. et al. Micropilot: automation of fluorescence microscopy–based imaging for systems biology. Nat. Methods8, 246–249 (2011). ArticleCAS Google Scholar
Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature464, 721–727 (2010). ArticleCAS Google Scholar
Tan, Y. Z., Cheng, A., Potter, C. S. & Carragher, B. Automated data collection in single particle electron microscopy. Microscopy (Oxf.)65, 43–56 (2016). Article Google Scholar
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol.151, 41–60 (2005). ArticleCAS Google Scholar
Rice, W. J. et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol.204, 38–44 (2018). ArticleCAS Google Scholar
Nicholson, W. V., White, H. & Trinick, J. An approach to automated acquisition of cryoEM images from lacey carbon grids. J. Struct. Biol.172, 395–399 (2010). ArticleCAS Google Scholar
Coudray, N. et al. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis. J. Struct. Biol.173, 365–374 (2011). ArticleCAS Google Scholar
Hu, M. et al. Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. J. Struct. Biol.171, 102–110 (2010). ArticleCAS Google Scholar
Cheng, A. Automation of data acquisition in electron crystallography. Methods Mol. Biol.955, 307–312 (2013). ArticleCAS Google Scholar
Gatel, C., Dupuy, J., Houdellier, F. & Hÿtch, M. J. Unlimited acquisition time in electron holography by automated feedback control of transmission electron microscope. Appl. Phys. Lett.113, 133102 (2018). Article Google Scholar
Tejada, A., den Dekker, A. J. & Van den Broek, W. Introducing measure-by-wire, the systematic use of systems and control theory in transmission electron microscopy. Ultramicroscopy111, 1581–1591 (2011). ArticleCAS Google Scholar
Liu, J. et al. Fully mechanically controlled automated electron microscopic tomography. Sci. Rep.6, 29231 (2016). Article Google Scholar
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). Article Google Scholar
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116, 71–76 (1996). ArticleCAS Google Scholar
Berthold, M. R. et al. KNIME: the Konstanz Information Miner. In Data Analysis, Machine Learning and Applications (eds. Preisach, C. et al.) 319–326 (Springer, 2008).
Dietz, C. & Berthold, M. R. KNIME for open-source bioimage analysis: a tutorial. In Focus on Bio-Image Informatics (eds. Vos, W. H. D., Munck, S. & Timmermans, J.-P.) 179–197 (Springer, 2016).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). ArticleCAS Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675 (2012). ArticleCAS Google Scholar
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol.7, R100 (2006). Article Google Scholar
McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol.16, e2005970 (2018). Article Google Scholar
Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics26, 979–981 (2010). ArticleCAS Google Scholar
Prouteau, M. et al. TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature550, 265–269 (2017). Article Google Scholar
de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods12, 503–513 (2015). Article Google Scholar
Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol.192, 111–119 (2011). ArticleCAS Google Scholar
Elserafy, M. et al. Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle. Curr. Biol.24, 1456–1466 (2014). ArticleCAS Google Scholar
Marteil, G. et al. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun.9, 1258 (2018). Article Google Scholar
Bron, C. et al. Three-dimensional electron microscopy of entire cells. J. Microsc.157, 115–126 (1990). ArticleCAS Google Scholar
Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol.197, 102–113 (2017). Article Google Scholar
Quinn, T. A. et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc. Natl Acad. Sci. USA113, 14852–14857 (2016). ArticleCAS Google Scholar
Cruz-Roa, A. et al. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS One13, e0196828 (2018). Article Google Scholar
Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging35, 1299–1312 (2016). Article Google Scholar
Buchholz, T.-O., Jordan, M., Pigino, G. & Jug, F. Cryo-CARE: content-aware image restoration for cryo-transmission electron microscopy data. Preprint at https://arxiv.org/abs/1810.05420 (2018).
Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS One7, e38011 (2012). ArticleCAS Google Scholar
Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng.9, 10–20 (2007). ArticleCAS Google Scholar
van der Walt, S. et al. scikit-image: image processing in Python. PeerJ2, e453 (2014). Article Google Scholar
Wood, C. et al. Collaborative computational project for electron cryo-microscopy. Acta Crystallogr. D Biol. Crystallogr.71, 123–126 (2015). ArticleCAS Google Scholar
Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D Struct. Biol.73, 469–477 (2017). ArticleCAS Google Scholar
McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds. van der Walt, S. & Millman, J.) 51–56 (SciPy, 2010).