Software tools for automated transmission electron microscopy (original) (raw)

References

  1. Winey, M., Meehl, J. B., O’Toole, E. T. & Giddings, T. H. Jr. Conventional transmission electron microscopy. Mol. Biol. Cell 25, 319–323 (2014).
    Article Google Scholar
  2. McMullan, G., Faruqi, A. R. & Henderson, R. Direct electron detectors. Methods Enzymol. 579, 1–17 (2016).
    Article CAS Google Scholar
  3. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).
    Article CAS Google Scholar
  4. Meijering, E., Carpenter, A. E., Peng, H., Hamprecht, F. A. & Olivo-Marin, J.-C. Imagining the future of bioimage analysis. Nat. Biotechnol. 34, 1250–1255 (2016).
    Article CAS Google Scholar
  5. Kreshuk, A., Koethe, U., Pax, E., Bock, D. D. & Hamprecht, F. A. Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9, e87351 (2014).
    Article Google Scholar
  6. Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).
    Article CAS Google Scholar
  7. Conrad, C. et al. Micropilot: automation of fluorescence microscopy–based imaging for systems biology. Nat. Methods 8, 246–249 (2011).
    Article CAS Google Scholar
  8. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).
    Article CAS Google Scholar
  9. Tan, Y. Z., Cheng, A., Potter, C. S. & Carragher, B. Automated data collection in single particle electron microscopy. Microscopy (Oxf.) 65, 43–56 (2016).
    Article Google Scholar
  10. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
    Article CAS Google Scholar
  11. Rice, W. J. et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 204, 38–44 (2018).
    Article CAS Google Scholar
  12. Nicholson, W. V., White, H. & Trinick, J. An approach to automated acquisition of cryoEM images from lacey carbon grids. J. Struct. Biol. 172, 395–399 (2010).
    Article CAS Google Scholar
  13. Coudray, N. et al. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis. J. Struct. Biol. 173, 365–374 (2011).
    Article CAS Google Scholar
  14. Hu, M. et al. Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. J. Struct. Biol. 171, 102–110 (2010).
    Article CAS Google Scholar
  15. Cheng, A. Automation of data acquisition in electron crystallography. Methods Mol. Biol. 955, 307–312 (2013).
    Article CAS Google Scholar
  16. Gatel, C., Dupuy, J., Houdellier, F. & Hÿtch, M. J. Unlimited acquisition time in electron holography by automated feedback control of transmission electron microscope. Appl. Phys. Lett. 113, 133102 (2018).
    Article Google Scholar
  17. Tejada, A., den Dekker, A. J. & Van den Broek, W. Introducing measure-by-wire, the systematic use of systems and control theory in transmission electron microscopy. Ultramicroscopy 111, 1581–1591 (2011).
    Article CAS Google Scholar
  18. Liu, J. et al. Fully mechanically controlled automated electron microscopic tomography. Sci. Rep. 6, 29231 (2016).
    Article Google Scholar
  19. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
    Article Google Scholar
  20. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
    Article CAS Google Scholar
  21. Berthold, M. R. et al. KNIME: the Konstanz Information Miner. In Data Analysis, Machine Learning and Applications (eds. Preisach, C. et al.) 319–326 (Springer, 2008).
  22. Dietz, C. & Berthold, M. R. KNIME for open-source bioimage analysis: a tutorial. In Focus on Bio-Image Informatics (eds. Vos, W. H. D., Munck, S. & Timmermans, J.-P.) 179–197 (Springer, 2016).
  23. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    Article CAS Google Scholar
  24. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    Article CAS Google Scholar
  25. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
    Article Google Scholar
  26. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).
    Article Google Scholar
  27. Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).
    Article CAS Google Scholar
  28. Prouteau, M. et al. TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 550, 265–269 (2017).
    Article Google Scholar
  29. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503–513 (2015).
    Article Google Scholar
  30. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011).
    Article CAS Google Scholar
  31. Elserafy, M. et al. Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle. Curr. Biol. 24, 1456–1466 (2014).
    Article CAS Google Scholar
  32. Marteil, G. et al. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 9, 1258 (2018).
    Article Google Scholar
  33. Bron, C. et al. Three-dimensional electron microscopy of entire cells. J. Microsc. 157, 115–126 (1990).
    Article CAS Google Scholar
  34. Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).
    Article Google Scholar
  35. Quinn, T. A. et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc. Natl Acad. Sci. USA 113, 14852–14857 (2016).
    Article CAS Google Scholar
  36. Cruz-Roa, A. et al. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS One 13, e0196828 (2018).
    Article Google Scholar
  37. Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016).
    Article Google Scholar
  38. Buchholz, T.-O., Jordan, M., Pigino, G. & Jug, F. Cryo-CARE: content-aware image restoration for cryo-transmission electron microscopy data. Preprint at https://arxiv.org/abs/1810.05420 (2018).
  39. Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS One 7, e38011 (2012).
    Article CAS Google Scholar
  40. Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).
    Article CAS Google Scholar
  41. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
    Article Google Scholar
  42. Wood, C. et al. Collaborative computational project for electron cryo-microscopy. Acta Crystallogr. D Biol. Crystallogr. 71, 123–126 (2015).
    Article CAS Google Scholar
  43. Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. D Struct. Biol. 73, 469–477 (2017).
    Article CAS Google Scholar
  44. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds. van der Walt, S. & Millman, J.) 51–56 (SciPy, 2010).
  45. Anderson, J. R. et al. Exploring the retinal connectome. Mol. Vis. 17, 355–379 (2011).
    PubMed PubMed Central Google Scholar

Download references