Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov.5, 993–996 (2006). ArticleCASPubMed Google Scholar
Renaud, J.-P. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov.17, 471–492 (2018). ArticleCASPubMed Google Scholar
Scapin, G., Potter, C. S. & Carragher, B. Cryo-EM for small molecules discovery, design, understanding, and application. Cell Chem. Biol.25, 1318–1325 (2018). ArticleCASPubMedPubMed Central Google Scholar
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: Algorithms for rapid unsupervised cryo-em structure determination. Nat. Methods14, 290–296 (2017). ArticleCASPubMed Google Scholar
Grigorieff, N. FREEALIGN: High resolution refinement of single particle structures. J. Struct. Biol.157, 117–125 (2007). ArticleCASPubMed Google Scholar
Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. Methods100, 25–34 (2016). ArticleCASPubMedPubMed Central Google Scholar
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife7, e35383 (2018). ArticlePubMedPubMed Central Google Scholar
Zivanov, J. et al. New tools for automated high-resolution cryo-em structure determination in RELION-3. eLife7, e42166 (2018). ArticlePubMedPubMed Central Google Scholar
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B39, 1–38 (1977). Google Scholar
Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy135, 24–35 (2013). ArticleCASPubMedPubMed Central Google Scholar
Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik73, 146–156 (1986). Google Scholar
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol.333, 721–745 (2003). ArticleCASPubMed Google Scholar
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol.180, 519–530 (2012). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature520, 511–517 (2015). ArticleCASPubMedPubMed Central Google Scholar
Golub, G. M., Heath, M. & Wahba, G. Generalized cross-validation as as a method for choosing a good ridge parameter. Technometrics21, 215–223 (1979). Article Google Scholar
Wahba, G. A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat.13, 1378–1402 (1985). Article Google Scholar
Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. Proc. Mach. Learn. Res. 7, 4620–4631 (2018).
Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-em reconstructions. J. Struct. Biol.184, 226–236 (2013). ArticlePubMed Google Scholar
Stagg, S., Noble, A., Spilman, M. & Chapman, M. Reslog plots as an empirical metric of the quality of cryo-EM reconstructions. J. Struct. Biol.185, 418–426 (2014). ArticlePubMed Google Scholar
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods11, 63–65 (2014). ArticleCASPubMed Google Scholar
Vilas, J. L. et al. Monores: automatic and accurate estimation of local resolution for electron microscopy maps. Structure26, 337–344 (2018). ArticleCASPubMed Google Scholar
Felsberg, M. & Sommer, G. The monogenic signal. IEEE Trans. Signal Process.49, 3136–3144 (2001). Article Google Scholar
Ramlaul, K., Palmer, C. M. & Aylett, C. H. S. A local agreement filtering algorithm for transmission EM reconstructions. J. Struct. Biol.205, 30–40 (2019). ArticlePubMedPubMed Central Google Scholar
Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol.211, 107545 (2020). ArticlePubMedPubMed Central Google Scholar
Vonesch, C., Wang, L., Shkolnisky, Y. and Singer, A. Fast wavelet-based single particle reconstruction in cryo-EM. Proc. IEEE Int. Symp. Biomed. Imaginghttps://doi.org/10.1109/ISBI.2011.5872791 (2011).
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. A Bayesian adaptive basis algorithm for single particle reconstruction. J. Struct. Biol.179, 56–67 (2012). ArticlePubMedPubMed Central Google Scholar
Nguyen, A. H. et al. Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex. Nat. Struct. Mol. Biol.26, 1123–1131 (2019). ArticleCASPubMedPubMed Central Google Scholar
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with warp. Nat. Methods16, 1146–1152 (2019). CASPubMedPubMed Central Google Scholar
Buchholz, T.-O., Jordan, M., Pigino, G. & Jug, F. cryoCARE: content-aware image restoration for cryo-transmission electron microscopy data. Preprint at arXivhttps://arxiv.org/abs/1810.05420 (2018).
Potamianos, A. & Maragos, P. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Process.37, 95–120 (1994). Article Google Scholar