Integrating signals from RTKs to ERK/MAPK (original) (raw)
Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem275: 22300–22304. ArticleCASPubMed Google Scholar
Agazie YM, Hayman MJ . (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol23: 7875–7886. ArticleCASPubMedPubMed Central Google Scholar
Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U et al. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J13: 1610–1619. ArticleCASPubMedPubMed Central Google Scholar
Baass PC, Di Guglielmo GM, Authier F, Posner BI, Bergeron JJ . (1995). Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol5: 465–470. ArticleCASPubMed Google Scholar
Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ et al. (2003). Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature424: 694–698. ArticleCASPubMed Google Scholar
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell21: 481–493. ArticleCASPubMed Google Scholar
Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schaffer AA et al. (2007). A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med13: 38–45. ArticleCASPubMed Google Scholar
Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J et al. (2006). Regulation of ras signaling dynamics by sos-mediated positive feedback. Curr Biol16: 2173–2179. ArticleCASPubMed Google Scholar
Brose N, Rosenmund C . (2002). Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci115: 4399–4411. ArticleCASPubMed Google Scholar
Burke P, Schooler K, Wiley HS . (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell12: 1897–1910. ArticleCASPubMedPubMed Central Google Scholar
Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol4: 343–350. ArticleCASPubMed Google Scholar
Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D et al. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell98: 69–80. ArticleCASPubMed Google Scholar
Dai P, Xiong WC, Mei L . (2006). Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem281: 927–933. ArticleCASPubMed Google Scholar
Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G et al. (1998). Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol8: 46–55. ArticleCASPubMed Google Scholar
Dhillon AS, Kolch W . (2002). Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys404: 3–9. ArticleCASPubMed Google Scholar
Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ . (1994). Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J13: 4269–4277. ArticleCASPubMedPubMed Central Google Scholar
Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC . (1998). RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science280: 1082–1086. ArticleCASPubMed Google Scholar
Fivaz M, Meyer T . (2005). Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J Cell Biol170: 429–441. ArticleCASPubMedPubMed Central Google Scholar
Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S et al. (2006). A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci USA103: 16692–16697. ArticleCASPubMedPubMed Central Google Scholar
Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell20: 963–969. ArticleCASPubMed Google Scholar
Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR et al. (2005). Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol170: 261–272. ArticleCASPubMedPubMed Central Google Scholar
Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E . (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem279: 22992–22995. ArticleCASPubMed Google Scholar
Hanafusa H, Torii S, Yasunaga T, Nishida E . (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol4: 850–858. ArticleCASPubMed Google Scholar
Hancock JF, Paterson H, Marshall CJ . (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell63: 133–139. ArticleCASPubMed Google Scholar
Huang YZ, Zang M, Xiong WC, Luo Z, Mei L . (2003). Erbin suppresses the MAP kinase pathway. J Biol Chem278: 1108–1114. ArticleCASPubMed Google Scholar
Ishibe S, Joly D, Liu ZX, Cantley LG . (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell16: 257–267. ArticleCASPubMed Google Scholar
Ishibe S, Joly D, Zhu X, Cantley LG . (2003). Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell12: 1275–1285. ArticleCASPubMed Google Scholar
Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev13: 163–175. ArticleCASPubMedPubMed Central Google Scholar
Jaffe AB, Aspenstrom P, Hall A . (2004). Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol24: 1736–1746. ArticleCASPubMedPubMed Central Google Scholar
Jaffe AB, Hall A, Schmidt A . (2005). Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol15: 405–412. ArticleCASPubMed Google Scholar
Jaumot M, Hancock JF . (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene20: 3949–3958. ArticleCASPubMed Google Scholar
Jiang X, Sorkin A . (2002). Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell13: 1522–1535. ArticleCASPubMedPubMed Central Google Scholar
Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D . (2006). Differential modification of Ras proteins by ubiquitination. Mol Cell21: 679–687. ArticleCASPubMed Google Scholar
Klinghoffer RA, Kazlauskas A . (1995). Identification of a putative Syp substrate, the PDGF beta receptor. J Biol Chem270: 22208–22217. ArticleCASPubMed Google Scholar
Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol6: 827–837. ArticleCASPubMed Google Scholar
Li W, Han M, Guan K-L . (2000). The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev14: 895–900. CASPubMedPubMed Central Google Scholar
Mansour SJ, Resing KA, Candi JM, Hermann AS, Gloor JW, Herskind KR et al. (1994). Mitogen-activated protein (MAP) kinase phosphorylation of MAP kinase kinase: determination of phosphorylation sites by mass spectrometry and site-directed mutagenesis. J Biochem116: 304–314. ArticleCASPubMed Google Scholar
Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M et al. (2003). Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS. Cell112: 685–695. ArticleCASPubMed Google Scholar
Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA . (2004). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature427: 256–260. ArticleCASPubMed Google Scholar
Montagner A, Yart A, Dance M, Perret B, Salles JP, Raynal P . (2005). A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem280: 5350–5360. ArticleCASPubMed Google Scholar
Mor A, Philips MR . (2006). Compartmentalized Ras/MAPK signaling. Annu Rev Immunol24: 771–800. ArticleCASPubMed Google Scholar
Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol19: 91–118. ArticleCASPubMed Google Scholar
Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK . (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell8: 983–993. ArticleCASPubMed Google Scholar
Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci28: 284–293. ArticleCASPubMed Google Scholar
Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK . (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol13: 1356–1364. ArticleCASPubMed Google Scholar
Pawson T . (2002). Regulation and targets of receptor tyrosine kinases. Eur J Cancer38: S3–10. ArticlePubMed Google Scholar
Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J et al. (1991). Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J10: 885–892. ArticleCASPubMedPubMed Central Google Scholar
Plowman SJ, Hancock JF . (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta1746: 274–283. ArticleCASPubMed Google Scholar
Quilliam LA, Khosravi-Far R, Huff SY, Der CJ . (1995). Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays17: 395–404. ArticleCASPubMed Google Scholar
Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK . (2007). CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol17: 179–184. ArticleCASPubMed Google Scholar
Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet39: 70–74. ArticleCASPubMed Google Scholar
Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science307: 1746–1752. ArticleCASPubMed Google Scholar
Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F . (2006). A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell22: 217–230. ArticleCASPubMed Google Scholar
Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol26: 2262–2272. ArticleCASPubMedPubMed Central Google Scholar
Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M et al. (2003). Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol5: 427–432. ArticleCASPubMed Google Scholar
Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J . (2004). Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell119: 393–405. ArticleCASPubMed Google Scholar
Sorkin A, Von Zastrow M . (2002). Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol3: 600–614. ArticleCASPubMed Google Scholar
Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet39: 75–79. ArticleCASPubMed Google Scholar
Teis D, Taub N, Kurzbauer R, Hilber D, de Araujo ME, Erlacher M et al. (2006). p14–MP1–MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol175: 861–868. ArticleCASPubMedPubMed Central Google Scholar
Teis D, Wunderlich W, Huber LA . (2002). Localization of the MP1–MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell3: 803–814. ArticleCASPubMed Google Scholar
Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E . (2004). Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell7: 33–44. ArticleCASPubMed Google Scholar
Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K et al. (2001). SPRED is a Sprouty-related suppressor of Ras signalling. Nature412: 647–651. ArticleCASPubMed Google Scholar
Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell116: 855–867. ArticleCASPubMed Google Scholar
Weber CK, Slupsky JR, Kalmes HA, Rapp UR . (2001). Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res61: 3595–3598. CASPubMed Google Scholar
Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol5: 875–885. ArticleCASPubMed Google Scholar
Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG et al. (2001). A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol152: 765–776. ArticleCASPubMedPubMed Central Google Scholar
Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM et al. (2000). Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Mol Cell Biol20: 3079–3085. ArticleCASPubMedPubMed Central Google Scholar
Yu W, Fantl WJ, Harrowe G, Williams LT . (1998). Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol8: 56–64. ArticleCASPubMed Google Scholar
Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell13: 341–355. ArticlePubMed Google Scholar
Zheng CF, Guan KL . (1994). Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J13: 1123–1131. ArticleCASPubMedPubMed Central Google Scholar
Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK . (2002). Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol315: 435–446. ArticleCASPubMed Google Scholar
Ziogas A, Moelling K, Radziwill G . (2005). CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem280: 24205–24211. ArticleCASPubMed Google Scholar