Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol.5, 875–885 (2004). ArticleCAS Google Scholar
Chong, H., Vikis, H. G. & Guan, K. L. Mechanisms of regulating the Raf kinase family. Cell Signal.15, 463–469 (2003). ArticleCASPubMed Google Scholar
Mikula, M. et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J.20, 1952–1962 (2001). References 4 and 5 describe the phenotype ofRaf-1 knockout mice, demonstrating that some of the functions of Raf-1 are independent of its ability to activate the ERK/MAPK pathway. ArticleCASPubMedPubMed Central Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCASPubMed Google Scholar
Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J.18, 664–674 (1999). ArticleCASPubMedPubMed Central Google Scholar
O'Neill, E., Rushworth, L., Baccarini, M. & Kolch, W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science306, 2267–2270 (2004). Shows that Raf-1, independently of its catalytic activity, can inhibit apoptosis by controlling the activation of the pro-apoptotic kinase MST2. Raf-1 interferes with MST2 dimerization and induces MST2 dephosphorylation. ArticleCASPubMed Google Scholar
Chen, J., Fujii, K., Zhang, L., Roberts, T. & Fu, H. Raf-1 promotes cell survival by antagonizing apoptosis signal- regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl Acad. Sci. USA98, 7783–7788. (2001). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, O. et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J. Clin. Invest114, 937–943 (2004). References 9 and 10 show that Raf-1 also can inhibit the pro-apoptotic kinase ASK1 by an unknown mechanism that does not require Raf-1 kinase activity. ArticleCASPubMedPubMed Central Google Scholar
Ehrenreiter, K. et al. Raf-1 regulates Rho signaling and cell migration. J. Cell Biol.168, 955–964 (2005). Describes a role for ASK1 suppression by Raf-1 during heart development and also demonstrates a role for Raf-1 in the regulation of cell migration and the actin cytoskeleton. Raf-1, independently of its kinase activity, controls Rho signalling. ArticleCASPubMedPubMed Central Google Scholar
Pritchard, C. A. et al. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol. Cell Biol24, 5937–5952 (2004). ArticleCASPubMedPubMed Central Google Scholar
Morrison, D. K. KSR: a MAPK scaffold of the Ras pathway? J. Cell Sci.114, 1609–1612. (2001). CASPubMed Google Scholar
Therrien, M., Michaud, N. R., Rubin, G. M. & Morrison, D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev.10, 2684–2695 (1996). Genetic and biochemical analyses of KSR function show that KSR is a regulated scaffold for the Raf–MEK–ERK/MAPK pathway. ArticleCASPubMed Google Scholar
Kortum, R. L. & Lewis, R. E. The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol. Cell Biol24, 4407–4416 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ohmachi, M. et al. C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr. Biol.12, 427–433 (2002). ArticleCASPubMed Google Scholar
Nguyen, A. et al. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol. Cell Biol.22, 3035–3045 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lozano, J. et al. Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res.63, 4232–4238 (2003). CASPubMed Google Scholar
Channavajhala, P. L. et al. Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling. J. Biol. Chem.278, 47089–47097 (2003). ArticleCASPubMed Google Scholar
Razidlo, G. L., Kortum, R. L., Haferbier, J. L. & Lewis, R. E. Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation. J. Biol. Chem.279, 47808–47814 (2004). Describes the effects of phosphorylation on KSR1 function. ArticleCASPubMed Google Scholar
Yan, F. et al. Kinase suppressor of Ras-1 protects intestinal epithelium from cytokine-mediated apoptosis during inflammation. J. Clin. Invest.114, 1272–1280 (2004). ArticleCASPubMedPubMed Central Google Scholar
Muller, J., Cacace, A. M., Lyons, W. E., McGill, C. B. & Morrison, D. K. Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol. Cell Biol.20, 5529–5539 (2000). ArticleCASPubMedPubMed Central Google Scholar
Muller, J., Ory, S., Copeland, T., Piwnica-Worms, H. & Morrison, D. K. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell8, 983–993 (2001). Shows that KSR1 is phosphorylated by C-TAK1 creating a 14-3-3 binding site on S392 that retains KSR1 in the cytosol. ArticleCASPubMed Google Scholar
Matheny, S. A. et al. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature427, 256–260 (2004). Identification of IMP as a Ras-regulated inhibitor of KSR. ArticleCASPubMed Google Scholar
Hartsough, M. T. et al. Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J. Biol. Chem.277, 32389–32399 (2002). ArticleCASPubMed Google Scholar
Cacace, A. M. et al. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14–3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell Biol.19, 229–240 (1999). ArticleCASPubMedPubMed Central Google Scholar
Therrien, M., Wong, A. M. & Rubin, G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell95, 343–353 (1998). This paper and reference 30 describe the identification of CNK as a multi-adaptor protein that regulates multiple signalling pathways. ArticleCASPubMed Google Scholar
Therrien, M., Wong, A. M., Kwan, E. & Rubin, G. M. Functional analysis of CNK in RAS signaling. Proc. Natl Acad. Sci. USA96, 13259–13263 (1999). ArticleCASPubMedPubMed Central Google Scholar
Laberge, G., Douziech, M. & Therrien, M. Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. EMBO J.24, 487–498 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gonfloni, S., Weijland, A., Kretzschmar, J. & Superti-Furga, G. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nature Struct. Biol.7, 281–286 (2000). ArticleCASPubMed Google Scholar
Ziogas, A., Moelling, K. & Radziwill, G. CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J. Biol. Chem. 24205–20211 (2005).
Rabizadeh, S. et al. The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J. Biol. Chem.279, 29247–29254 (2004). ArticleCASPubMed Google Scholar
Lanigan, T. M. et al. Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J.17, 2048–2060 (2003). ArticleCASPubMed Google Scholar
Bumeister, R., Rosse, C., Anselmo, A., Camonis, J. & White, M. A. CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr. Biol.14, 439–445 (2004). ArticleCASPubMed Google Scholar
Tran, Y. K. et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res.59, 35–43 (1999). CASPubMed Google Scholar
Ohtakara, K. et al. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells7, 1149–1160 (2002). ArticleCASPubMed Google Scholar
Jaffe, A. B., Aspenstrom, P. & Hall, A. Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol. Cell Biol24, 1736–1746 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Ilasaca, M. A., Bernabe-Ortiz, J. C., Na, S. Y., Dzau, V. J. & Xavier, R. J. Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells. FEBS Lett.579, 648–654 (2005). ArticleCASPubMed Google Scholar
Jackson, P. K. Linking tumor suppression, DNA damage and the anaphase-promoting complex. Trends Cell Biol.14, 331–334 (2004). ArticleCASPubMed Google Scholar
Sharif, A., Canton, B., Junier, M. P. & Chneiweiss, H. PEA-15 modulates TNFα intracellular signaling in astrocytes. Ann. NY Acad. Sci.1010, 43–50 (2003). ArticleCASPubMed Google Scholar
Whitehurst, A. W., Robinson, F. L., Moore, M. S. & Cobb, M. H. The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J. Biol. Chem.279, 12840–12847 (2004). ArticleCASPubMed Google Scholar
Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell1, 239–250 (2001). Identification of PEA15 as an inhibitor of ERK/MAPK nuclear signalling. PEA15 sequesters ERK/MAPK in the cytosol. ArticleCASPubMed Google Scholar
Ramos, J. W., Kojima, T. K., Hughes, P. E., Fenczik, C. A. & Ginsberg, M. H. The death effector domain of PEA-15 is involved in its regulation of integrin activation. J. Biol. Chem.273, 33897–33900 (1998). ArticleCASPubMed Google Scholar
Vial, E., Sahai, E. & Marshall, C. J. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell4, 67–79 (2003). ArticleCASPubMed Google Scholar
Lefkowitz, R. J. & Whalen, E. J. β-arrestins: traffic cops of cell signaling. Curr. Opin. Cell Biol.16, 162–168 (2004). ArticleCASPubMed Google Scholar
Shenoy, S. K. & Lefkowitz, R. J. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J.375, 503–515 (2003). ArticleCASPubMedPubMed Central Google Scholar
Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl Acad. Sci. USA98, 2449–2454 (2001). The above three papers review the complex roles of β-arrestins as multifunctional adaptor proteins and regulators of GPCR endocytosis. ArticleCASPubMedPubMed Central Google Scholar
DeFea, K. A. et al. β-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol.148, 1267–1282 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tohgo, A. et al. The stability of the G protein-coupled receptor-β-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem.278, 6258–6267 (2003). ArticleCASPubMed Google Scholar
Wei, H. et al. Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl Acad. Sci. USA100, 10782–10787 (2003). ArticleCASPubMedPubMed Central Google Scholar
Luttrell, L. M. 'Location, location, location': activation and targeting of MAP kinases by G protein-coupled receptors. J. Mol. Endocrinol.30, 117–126 (2003). ArticleCASPubMed Google Scholar
Ahn, S., Shenoy, S. K., Wei, H. & Lefkowitz, R. J. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem.279, 35518–35525 (2004). ArticleCASPubMed Google Scholar
Lin, F. T., Miller, W. E., Luttrell, L. M. & Lefkowitz, R. J. Feedback regulation of β-arrestin1 function by extracellular signal-regulated kinases. J. Biol. Chem.274, 15971–15974 (1999). ArticleCASPubMed Google Scholar
Pitcher, J. A. et al. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem.274, 34531–34534 (1999). ArticleCASPubMed Google Scholar
Furthauer, M., Lin, W., Ang, S. L., Thisse, B. & Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nature Cell Biol.4, 170–174 (2002). ArticleCASPubMed Google Scholar
Tsang, M., Friesel, R., Kudoh, T. & Dawid, I. B. Identification of Sef, a novel modulator of FGF signalling. Nature Cell Biol.4, 165–169 (2002). ArticleCASPubMed Google Scholar
Tsang, M. & Dawid, I. B. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci. STKE.2004, e17 (2004). Google Scholar
Torii, S., Kusakabe, M., Yamamoto, T., Maekawa, M. & Nishida, E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell7, 33–44 (2004). Sef scaffolds a MEK–ERK/MAPK complex at the Golgi. Sef inhibits nuclear ERK/MAPK signalling, but permits the phosphorylation of cytosolic substrates by ERK/MAPK. ArticleCASPubMed Google Scholar
Bivona, T. G. et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature424, 694–698 (2003). ArticleCASPubMed Google Scholar
Hart, M. J., Callow, M. G., Souza, B. & Polakis, P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J.15, 2997–3005 (1996). ArticleCASPubMedPubMed Central Google Scholar
Brill, S. et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell Biol.16, 4869–4878 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bourguignon, L. Y., Gilad, E., Rothman, K. & Peyrollier, K. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J. Biol. Chem.280, 11961–11972 (2005). ArticleCASPubMed Google Scholar
Roy, M., Li, Z. & Sacks, D. B. IQGAP1 binds ERK2 and modulates its activity. J. Biol. Chem.279, 17329–17337 (2004). ArticleCASPubMed Google Scholar
King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature396, 180–183 (1998). ArticleCASPubMed Google Scholar
Harrison, R. E., Sikorski, B. A. & Jongstra, J. Leukocyte-specific protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1 and ERK2 to the actin cytoskeleton. J. Cell Sci.117, 2151–2157 (2004). ArticleCASPubMed Google Scholar
Huang, C., Jacobson, K. & Schaller, M. D. MAP kinases and cell migration. J. Cell Sci.117, 4619–4628 (2004). ArticleCASPubMed Google Scholar
Turner, C. E. Paxillin interactions. J. Cell Sci.113, 4139–4140 (2000). CASPubMed Google Scholar
Ishibe, S., Joly, D., Zhu, X. & Cantley, L. G. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell12, 1275–1285 (2003). ArticleCASPubMed Google Scholar
Ishibe, S., Joly, D., Liu, Z. X. & Cantley, L. G. Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol. Cell16, 257–267 (2004). References 71 and 72 describe the assembly of an ERK/MAPK signalling complex at the site of focal adhesions that coordinates the turnover of focal adhesions during migration by connecting ERK/MAPK signalling with Rac activation. ArticleCASPubMed Google Scholar
Schaeffer, H. J. et al. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science281, 1668–1671 (1998). This paper and reference 76 identify and characterize the function of MP1, showing that it is a scaffold protein that localizes ERK/MAPK signalling to endosomes. ArticleCASPubMed Google Scholar
Kurzbauer, R. et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl Acad. Sci. USA101, 10984–10989 (2004). ArticleCASPubMedPubMed Central Google Scholar
Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell3, 803–814 (2002). ArticleCASPubMed Google Scholar
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol.20, 370–375 (2002). One of the most exhaustive computational models of the ERK/MAPK pathway. Article Google Scholar
Sharma, C. et al. MEK partner 1 (MP1): regulation of oligomerization in MAP kinase signaling. J. Cell Biochem.94, 708–719 (2005). ArticleCASPubMed Google Scholar
Pullikuth, A., McKinnon, E., Schaeffer, H. J. & Catling, A. D. The MEK1 scaffolding protein MP1 regulates cell spreading by integrating PAK1 and Rho signals. Mol. Cell Biol25, 5119–5133 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vomastek, T. et al. Modular construction of a signaling scaffold: MORG1 interacts with components of the ERK cascade and links ERK signaling to specific agonists. Proc. Natl Acad. Sci. USA101, 6981–6986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yeung, K. et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature401, 173–177 (1999). Identifies RKIP as a physiological inhibitor of ERK/MAPK signalling. The mechanism of inhibition is the disruption of the Raf–MEK interaction by RKIP. ArticleCASPubMed Google Scholar
Park, S., Yeung, M. L., Beach, S., Shields, J. M. & Yeung, K. C. RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene24, 3535–3540 (2005). ArticleCASPubMed Google Scholar
Trakul, N., Menard, R. E., Schade, G. R., Qian, Z. & Rosner, M. R. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J. Biol. Chem.280, 24931–24940 (2005). ArticleCASPubMed Google Scholar
Corbit, K. C. et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem.278, 13061–13068 (2003). ArticleCASPubMed Google Scholar
Lorenz, K., Lohse, M. J. & Quitterer, U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature426, 574–579 (2003). PKC phosphorylation of RKIP inactivates RKIP as an inhibitor of Raf-mediated MEK phosphorylation, and turns RKIP into an inhibitor of GRK2, resulting in extended signalling by GPCRs. ArticleCASPubMed Google Scholar
Yeung, K. C. et al. Raf kinase inhibitor protein interacts with NF-κb-inducing kinase and tak1 and inhibits NF-κb activation. Mol. Cell Biol.21, 7207–7217 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schuierer, M. M., Bataille, F., Hagan, S., Kolch, W. & Bosserhoff, A. K. Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res.64, 5186–5192 (2004). ArticleCASPubMed Google Scholar
Chatterjee, D. et al. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J. Biol. Chem.279, 17515–17523 (2004). ArticleCASPubMed Google Scholar
Fu, Z. et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J. Natl Cancer Inst.95, 878–889 (2003). First demonstration that RKIP is a metastasis suppressor gene. ArticleCASPubMed Google Scholar
Jazirehi, A. R., Vega, M. I., Chatterjee, D., Goodglick, L. & Bonavida, B. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab. Cancer Res.64, 7117–7126 (2004). ArticleCASPubMed Google Scholar
Yamazaki, T. et al. Differentiation induction of human keratinocytes by phosphatidylethanolamine-binding protein. J. Biol. Chem.279, 32191–32195 (2004). ArticleCASPubMed Google Scholar
Kazuki, Y. et al. Human chromosome 21q22.2-qter carries a gene(s) responsible for downregulation of mlc2a and PEBP in Down syndrome model mice. Biochem. Biophys. Res. Comm.317, 491–499 (2004). ArticleCASPubMed Google Scholar
Agha, M. M. et al. Congenital abnormalities and childhood cancer. Cancer103, 1939–1948 (2005). ArticlePubMed Google Scholar
Kim, H. J. & Bar-Sagi, D. Modulation of signalling by Sprouty: a developing story. Nature Rev. Mol. Cell Biol.5, 441–450 (2004). A recent comprehensive review on the pleiotropic functions of the Sprouty and SPRED family. ArticleCAS Google Scholar
Li, X., Brunton, V. G., Burgar, H. R., Wheldon, L. M. & Heath, J. K. FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J. Cell Sci.117, 6007–6017 (2004). ArticleCASPubMed Google Scholar
Gross, I., Bassit, B., Benezra, M. & Licht, J. D. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem.276, 46460–46468 (2001). ArticleCASPubMed Google Scholar
Egan, J. E., Hall, A. B., Yatsula, B. A. & Bar-Sagi, D. The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc. Natl Acad. Sci. USA99, 6041–6046 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wong, E. S. et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J.21, 4796–4808 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sasaki, A. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nature Cell Biol.5, 427–432 (2003). ArticleCASPubMed Google Scholar
Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA97, 5818–5823 (2000). ArticleCASPubMedPubMed Central Google Scholar
Burack, W. R. & Sturgill, T. W. The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry36, 5929–5933 (1997). ArticleCASPubMed Google Scholar
Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol.14, 140–148 (2002). ArticleCASPubMed Google Scholar
Xiong, W. & Ferrell, J. E. Jr. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature426, 460–465 (2003). ArticleCASPubMed Google Scholar
Heinrich, R., Neel, B. G. & Rapoport, T. A. Mathematical models of protein kinase signal transduction. Mol. Cell9, 957–970 (2002). A comprehensive theoretical analysis of the rich biochemical behaviour intrinsic to kinase cascades. ArticleCASPubMed Google Scholar
Repasky, G. A., Chenette, E. J. & Der, C. J. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol.14, 639–647 (2004). ArticleCASPubMed Google Scholar
Garnett, M. J. & Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell6, 313–319 (2004). ArticleCASPubMed Google Scholar
Garcia, R., Dhillon, A. S. & Kolch, W. in Recent Res. Devel. Mol. Cell. Biol. 3. (Pandalai, S. G. ed.) 88–112 (Research Signpost, 2002).
Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol Rev.68, 320–344 (2004). ArticleCASPubMedPubMed Central Google Scholar