Tumor targeting with a selective gelatinase inhibitor (original) (raw)

References

  1. Birkendal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728–735 ( 1995).
    Article Google Scholar
  2. Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573 (1993).
    Article CAS Google Scholar
  3. Murray, G.I., Duncan, M.E., O'Neil, P., Melvin, W.T. & Fothergill, J.E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med. 2, 461–462 (1996).
    Article CAS Google Scholar
  4. Murphy, G. & Crabbe, T. Gelatinases A and B. Methods Enzymol. 248, 470–484 (1995).
    Article CAS Google Scholar
  5. Liotta, L.A. et al. Metastatic potential correlates with enzyme derived from a metastatic murine tumor. Nature 284, 67– 68 (1980).
    Article CAS Google Scholar
  6. Karakiulakis, G. et al. Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion & Metastasis 17, 158–168 1997.
    CAS Google Scholar
  7. Pyke, C., Ralfkiaer, E., Tryggvason, K. & Dano, K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol. 142, 359–365 (1993).
    CAS PubMed PubMed Central Google Scholar
  8. Sugiura, Y., Shimada, H., Seeger, R.C., Laung, W.E. & DeClerck, Y. A Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: contribution of stromal cells to their production and correlation with metastasis. Cancer Res. 58, 2209–2216 (1998).
    CAS PubMed Google Scholar
  9. Wilhelm, S.M. et al. SV40-transformed human lung fibroblasts secrete a 92 kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 264, 17213– 17221 (1989).
    CAS PubMed Google Scholar
  10. Heppner, K.J., Matrisian, L.M., Jensen, R.A. & Rodgers, W.H. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced response. Am. J. Pathol. 149, 273–282 (1996).
    CAS PubMed PubMed Central Google Scholar
  11. Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693 ( 1996).
    Article CAS Google Scholar
  12. Haas, T.L., Davis, S.J. & Madri, J.A. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J. Biol. Chem. 273, 3604 –3610 (1998).
    Article CAS Google Scholar
  13. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93 , 411–422 (1998).
    Article CAS Google Scholar
  14. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).
    Article CAS Google Scholar
  15. Davies, B., Brown, P.D., East, N., Crimmin, M.J. & Balkwill, F.R. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. 53, 2087– 2091 (1993).
    CAS PubMed Google Scholar
  16. Taraboletti, G. et al. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst. 87, 293–298 (1995).
    Article CAS Google Scholar
  17. Volpert, O.V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J. Clin. Invest. 98, 671 –679 (1996).
    Article CAS Google Scholar
  18. Anderson, I.C., Shipp, M.A., Docherty, A.J.P. & Teicher, B.A. Combination therapy including a gelatinase inhibitor and a cytotoxic agent reduced local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56, 715–710 (1996).
    CAS PubMed Google Scholar
  19. Ecclels, S.A. et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 56, 2815–2822 (1996).
    Google Scholar
  20. Talbot, D.C. & Brown, P.D. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur. J. Cancer 32, 2528– 2533 (1996).
    Article Google Scholar
  21. Beckett, R.P., Davidson, A.H., Drummond, A.H., Huxley, P. & Whittaker, M. Recent advances in matrix metalloproteinase inhibitor research. Drug Design Today 1, 16–26 (1996).
    Article CAS Google Scholar
  22. Santos, O., McDermott, C.D., Daniels, R.G. & Appelt, K. Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metastasis 15, 499–508 ( 1997).
    Article CAS Google Scholar
  23. Pulli, T., Koivunen, E. & Hyypia, T. Cell-surface interactions of echovirus 22. J. Biol. Chem. 272, 21176–21180 (1997).
    Article CAS Google Scholar
  24. Goldberg, G.I., Strongin, A., Collier, I.E., Genrich, L.T. & Marmer, B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 267, 4583– 4591 (1992).
    CAS PubMed Google Scholar
  25. Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400 (1998).
    Article CAS Google Scholar
  26. Pasqualini, R., Koivunen, E. & Ruoslahti, E. αv integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 245, 346–369 (1997).
    Google Scholar
  27. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).
    Article CAS Google Scholar
  28. Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol. 16, 2150–2156 (1998).
    Article CAS Google Scholar
  29. Goetzl, E.J., Banda, M.J. & Leppert, D. Matrix metalloproteinases in immunity. J. Immunol. 156, 1–4 ( 1996).
    CAS PubMed Google Scholar
  30. Sorsa, T. et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J. Biol. Chem. 272, 21067– 21074 (1997).
    Article CAS Google Scholar
  31. Nagase, H., Enghild, J.J., Suzuki, K. & Salvesen, G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl) mercuric acetate. Biochemistry 29, 5783–5790 (1990).
    Article CAS Google Scholar
  32. Stocker, W. & Bode, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Opin. Struct. Biol. 5, 383–390 ( 1995).
    Article CAS Google Scholar
  33. Ferry, G., Boutin, J.A., Atassi, G., Fauchere, J.-L. & Tucker, G.C. Selection of histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries. Molecular Diversity 2, 135–146 (1996).
    Article Google Scholar
  34. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent display. Science 260, 1113–1117 ( 1993).
    Article CAS Google Scholar
  35. Ke, S.H. et al. Distinguishing the specificities of closely related proteases. Role of P3 in substrate and inhibitor discrimination between tissue type plasminogen activator and urokinase. J. Biol. Chem. 272, 16603–16609 (1997).
    Article CAS Google Scholar
  36. Smith M.M., Shi, L. & Navre, M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J. Biol. Chem. 270, 6440–6449 (1995).
    Article CAS Google Scholar
  37. Krook, M., Lindbladh, C., Eriksen, J.A. & Mosbach, K. Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library. Molecular Diversity 3, 149–159 (1998).
    Article CAS Google Scholar
  38. Rui, F., Jie, Q., Zhi-bin, L., Hui, Z., Wei, L. & Jiacong, S. Selection of trypsin inhibitors in a phage peptide library. Biochem. Biophys. Res. Commun. 220, 53–56 ( 1996).
    Article Google Scholar
  39. Seftor, R.E.B. et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin. Exp. Metastasis 16, 217–225 (1998).
    Article CAS Google Scholar
  40. Kim, J., Yu, W., Kovalski, K. & Ossowski, L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94, 353– 362 (1998).
    Article CAS Google Scholar
  41. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048– 1051 (1998).
    CAS Google Scholar
  42. Arap, W., Pasqualini., R. & Ruoslahti, E. Chemotherapy targeted to tumor vasculature. Current Opinion in Oncology 10, 560– 565 (1998).
    Article CAS Google Scholar
  43. Rajotte, D. & Ruoslahti, E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11593–11598 (1999).
    Article CAS Google Scholar
  44. Pasqualini, R., Arap, W., Rajotte, D. & Ruoslahti, E. in Phage display of proteins and peptides (eds Barbas, C., Burton, D., Silverman, G., & Scott, J.) (Cold Spring Harbor Laboratory Press, New York, 1999). In press.
  45. Sorsa, T. et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and Western blot assessment with special reference to their cellular sources in periodontal diseases. Ann. N.Y. Acad. Sci. 732, 112–131 ( 1994).
    Article CAS Google Scholar
  46. Koivunen, E. et al. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int. J. Cancer 47, 592–596 (1991).
    Article CAS Google Scholar
  47. Domingo, G.J., Leatherbarrow, R.J., Freeman, N., Patel, S. & Weir, M. Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors. International Journal of Peptide and Protein Research 46, 79–87 ( 1995).
    Article CAS Google Scholar
  48. Koivunen, E., Wang, B. & Ruoslahti, E. . Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of of the RGD-directed integrins. Bio/Technology 13, 265–270 (1995).
    CAS PubMed Google Scholar
  49. Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 217 , 228–257 (1993).
    Article CAS Google Scholar
  50. Teronen, O. et al. Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate. J. Dent. Res. 76, 1529–1537 (1997).
    Article CAS Google Scholar
  51. Edgell, C.-J.S., McDonald, C.C. & Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80, 3734–3737 ( 1983).
    Article CAS Google Scholar
  52. Herndier, B.G. et al. Characterization of a human Kaposi's sarcoma cell line that induces angiogenic tumors in animals. AIDS 8, 575–581 (1996).
    Article Google Scholar

Download references