Tumor targeting with a selective gelatinase inhibitor (original) (raw)
References
Birkendal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol.7, 728–735 ( 1995). Article Google Scholar
Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol.9, 541–573 (1993). ArticleCAS Google Scholar
Murray, G.I., Duncan, M.E., O'Neil, P., Melvin, W.T. & Fothergill, J.E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med.2, 461–462 (1996). ArticleCAS Google Scholar
Murphy, G. & Crabbe, T. Gelatinases A and B. Methods Enzymol.248, 470–484 (1995). ArticleCAS Google Scholar
Liotta, L.A. et al. Metastatic potential correlates with enzyme derived from a metastatic murine tumor. Nature284, 67– 68 (1980). ArticleCAS Google Scholar
Karakiulakis, G. et al. Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion & Metastasis17, 158–168 1997. CAS Google Scholar
Pyke, C., Ralfkiaer, E., Tryggvason, K. & Dano, K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol.142, 359–365 (1993). CASPubMedPubMed Central Google Scholar
Sugiura, Y., Shimada, H., Seeger, R.C., Laung, W.E. & DeClerck, Y. A Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: contribution of stromal cells to their production and correlation with metastasis. Cancer Res.58, 2209–2216 (1998). CASPubMed Google Scholar
Wilhelm, S.M. et al. SV40-transformed human lung fibroblasts secrete a 92 kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem.264, 17213– 17221 (1989). CASPubMed Google Scholar
Heppner, K.J., Matrisian, L.M., Jensen, R.A. & Rodgers, W.H. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced response. Am. J. Pathol.149, 273–282 (1996). CASPubMedPubMed Central Google Scholar
Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell85, 683–693 ( 1996). ArticleCAS Google Scholar
Haas, T.L., Davis, S.J. & Madri, J.A. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J. Biol. Chem.273, 3604 –3610 (1998). ArticleCAS Google Scholar
Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell93 , 411–422 (1998). ArticleCAS Google Scholar
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996). ArticleCAS Google Scholar
Davies, B., Brown, P.D., East, N., Crimmin, M.J. & Balkwill, F.R. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res.53, 2087– 2091 (1993). CASPubMed Google Scholar
Taraboletti, G. et al. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst.87, 293–298 (1995). ArticleCAS Google Scholar
Volpert, O.V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J. Clin. Invest.98, 671 –679 (1996). ArticleCAS Google Scholar
Anderson, I.C., Shipp, M.A., Docherty, A.J.P. & Teicher, B.A. Combination therapy including a gelatinase inhibitor and a cytotoxic agent reduced local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res.56, 715–710 (1996). CASPubMed Google Scholar
Ecclels, S.A. et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res.56, 2815–2822 (1996). Google Scholar
Talbot, D.C. & Brown, P.D. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur. J. Cancer32, 2528– 2533 (1996). Article Google Scholar
Beckett, R.P., Davidson, A.H., Drummond, A.H., Huxley, P. & Whittaker, M. Recent advances in matrix metalloproteinase inhibitor research. Drug Design Today1, 16–26 (1996). ArticleCAS Google Scholar
Santos, O., McDermott, C.D., Daniels, R.G. & Appelt, K. Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metastasis15, 499–508 ( 1997). ArticleCAS Google Scholar
Pulli, T., Koivunen, E. & Hyypia, T. Cell-surface interactions of echovirus 22. J. Biol. Chem.272, 21176–21180 (1997). ArticleCAS Google Scholar
Goldberg, G.I., Strongin, A., Collier, I.E., Genrich, L.T. & Marmer, B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem.267, 4583– 4591 (1992). CASPubMed Google Scholar
Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell92, 391–400 (1998). ArticleCAS Google Scholar
Pasqualini, R., Koivunen, E. & Ruoslahti, E. αv integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol.245, 346–369 (1997). Google Scholar
Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science279, 377–380 (1998). ArticleCAS Google Scholar
Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol.16, 2150–2156 (1998). ArticleCAS Google Scholar
Goetzl, E.J., Banda, M.J. & Leppert, D. Matrix metalloproteinases in immunity. J. Immunol.156, 1–4 ( 1996). CASPubMed Google Scholar
Sorsa, T. et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J. Biol. Chem.272, 21067– 21074 (1997). ArticleCAS Google Scholar
Nagase, H., Enghild, J.J., Suzuki, K. & Salvesen, G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl) mercuric acetate. Biochemistry29, 5783–5790 (1990). ArticleCAS Google Scholar
Stocker, W. & Bode, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Opin. Struct. Biol.5, 383–390 ( 1995). ArticleCAS Google Scholar
Ferry, G., Boutin, J.A., Atassi, G., Fauchere, J.-L. & Tucker, G.C. Selection of histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries. Molecular Diversity2, 135–146 (1996). Article Google Scholar
Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent display. Science260, 1113–1117 ( 1993). ArticleCAS Google Scholar
Ke, S.H. et al. Distinguishing the specificities of closely related proteases. Role of P3 in substrate and inhibitor discrimination between tissue type plasminogen activator and urokinase. J. Biol. Chem.272, 16603–16609 (1997). ArticleCAS Google Scholar
Smith M.M., Shi, L. & Navre, M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J. Biol. Chem.270, 6440–6449 (1995). ArticleCAS Google Scholar
Krook, M., Lindbladh, C., Eriksen, J.A. & Mosbach, K. Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library. Molecular Diversity3, 149–159 (1998). ArticleCAS Google Scholar
Rui, F., Jie, Q., Zhi-bin, L., Hui, Z., Wei, L. & Jiacong, S. Selection of trypsin inhibitors in a phage peptide library. Biochem. Biophys. Res. Commun.220, 53–56 ( 1996). Article Google Scholar
Seftor, R.E.B. et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin. Exp. Metastasis16, 217–225 (1998). ArticleCAS Google Scholar
Kim, J., Yu, W., Kovalski, K. & Ossowski, L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell94, 353– 362 (1998). ArticleCAS Google Scholar
Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res.58, 1048– 1051 (1998). CAS Google Scholar
Arap, W., Pasqualini., R. & Ruoslahti, E. Chemotherapy targeted to tumor vasculature. Current Opinion in Oncology10, 560– 565 (1998). ArticleCAS Google Scholar
Rajotte, D. & Ruoslahti, E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem.274, 11593–11598 (1999). ArticleCAS Google Scholar
Pasqualini, R., Arap, W., Rajotte, D. & Ruoslahti, E. in Phage display of proteins and peptides (eds Barbas, C., Burton, D., Silverman, G., & Scott, J.) (Cold Spring Harbor Laboratory Press, New York, 1999). In press.
Sorsa, T. et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and Western blot assessment with special reference to their cellular sources in periodontal diseases. Ann. N.Y. Acad. Sci.732, 112–131 ( 1994). ArticleCAS Google Scholar
Koivunen, E. et al. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int. J. Cancer47, 592–596 (1991). ArticleCAS Google Scholar
Domingo, G.J., Leatherbarrow, R.J., Freeman, N., Patel, S. & Weir, M. Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors. International Journal of Peptide and Protein Research46, 79–87 ( 1995). ArticleCAS Google Scholar
Koivunen, E., Wang, B. & Ruoslahti, E. . Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of of the RGD-directed integrins. Bio/Technology13, 265–270 (1995). CASPubMed Google Scholar
Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol.217 , 228–257 (1993). ArticleCAS Google Scholar
Teronen, O. et al. Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate. J. Dent. Res.76, 1529–1537 (1997). ArticleCAS Google Scholar
Edgell, C.-J.S., McDonald, C.C. & Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA80, 3734–3737 ( 1983). ArticleCAS Google Scholar
Herndier, B.G. et al. Characterization of a human Kaposi's sarcoma cell line that induces angiogenic tumors in animals. AIDS8, 575–581 (1996). Article Google Scholar