Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading (original) (raw)

References

  1. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).
    Article CAS Google Scholar
  2. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).
    Article CAS Google Scholar
  3. Jalink, K., Hengeveld, T., Morii, N., Narumiya, S. & Moolenaar, W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).
    Article CAS Google Scholar
  4. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)- regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).
    Article CAS Google Scholar
  5. van Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).
    Article CAS Google Scholar
  6. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42 Hs, Rac1 and acetylcholine, and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).
    Article CAS Google Scholar
  7. Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. Eur. J. Biochem. 242, 171–185 (1996).
    Article CAS Google Scholar
  8. Sander, E. E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398 (1998).
    Article CAS Google Scholar
  9. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).
    Article CAS Google Scholar
  10. Michiels, F., Habets, G. G. M., Stam, J. C., Van der Kammen, R. A. & Collard, J. G. A role for Rac-1 in Tiam1 induced membrane ruffling and T-lymphoma invasion. Nature 375, 338–340 (1995).
    Article CAS Google Scholar
  11. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42HS and Bradykinin promote the formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).
    Article CAS Google Scholar
  12. Nobes, C. D. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62 (1995).
    Article CAS Google Scholar
  13. Sells, M. A. et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).
    Article CAS Google Scholar
  14. Manser, E. et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell Biol. 17, 1129–1143 (1997).
    Article CAS Google Scholar
  15. Daniels, R. H., Hall, P. S. & Bokoch, G. M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J. 17, 754–764 (1998).
    Article CAS Google Scholar
  16. Tang, Y. et al. Kinase deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell. Biol. 17, 4454–4464 (1997).
    Article CAS Google Scholar
  17. King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183 (1998).
    Article CAS Google Scholar
  18. Fasolato, C., Pandiella, A., Meldolesi, J. & Pozzan, T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J. Biol. Chem. 263, 17350–17359 (1988).
    CAS PubMed Google Scholar
  19. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).
    Article CAS Google Scholar
  20. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).
    Article CAS Google Scholar
  21. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).
    Article CAS Google Scholar
  22. Tan, J. L., Ravid, S. & Spudich, J. A. Control of nonmuscle myosins by phosphorylation. Annu. Rev. Biochem. 61, 721–759 (1992).
    Article CAS Google Scholar
  23. Ludowyke, R. I., Peleg, I., Beaven, M. A. & Adelstein, R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J. Biol. Chem. 264, 12492–12501 (1989).
    CAS PubMed Google Scholar
  24. Spudich, A. Myosin reorganization in activated RBL cells correlates temporally with stimulated secretion. Cell Motil. Cytoskeleton 29, 345–353 (1994).
    Article CAS Google Scholar
  25. Wilson, J. R., Ludowyke, R. I. & Biden, T. J. Nutrient stimulation results in a rapid Ca2+-dependent threonine phosphorylation of myosin heavy chain in rat pancreatic islets and RINm5F cells. J. Biol. Chem. 273, 22729–22737 (1998).
    Article CAS Google Scholar
  26. Brzeska, H. & Korn, E. D. Regulation of class I and class II myosins by heavy chain phosphorylation. J. Biol. Chem. 271, 16983–16986 (1996).
    Article CAS Google Scholar
  27. Egelhoff, T. T., Lee, R. J. & Spudich, J. A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75, 363–371 (1993).
    Article CAS Google Scholar
  28. Murakami, N., Chauhan, V. P. & Elzinga, M. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry 37, 1989–2003 (1998).
    Article CAS Google Scholar
  29. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).
    Article CAS Google Scholar
  30. Peppelenbosch, M. P. et al. Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J. Biol Chem. 271, 7883–7886 (1996).
    Article CAS Google Scholar
  31. Lee, S. F., Egelhoff, T. T., Mahasneh, A. & Cote, G. P. Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J. Biol Chem. 271, 27044–27048 (1996).
    Article CAS Google Scholar
  32. Brzeska, H., Szczepanowska, J., Hoey, J. & Korn, E. D. The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21- activated kinase (PAK). J. Biol Chem. 271, 27056–27062 (1996).
    Article CAS Google Scholar
  33. Wu, C. et al. Activation of myosin-I by members of the Ste20p protein family. J. Biol Chem. 271, 31787–31790 (1996).
    Article CAS Google Scholar
  34. Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).
    Article CAS Google Scholar
  35. Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).
    Article CAS Google Scholar
  36. Burridge, K. Crosstalk between Rac and Rho. Science 283, 2028–2029 (1999).
    Article CAS Google Scholar
  37. Ramos, E., Wysolmerski, R. B. & Masaracchia, R. A. Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept. Signal Transduct. 7, 99–110 (1997).
    CAS PubMed Google Scholar
  38. Van Eyk, J. E. et al. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+- independent contraction of smooth muscle. J. Biol Chem. 273, 23433–23439 (1998).
    Article CAS Google Scholar
  39. Yablonski, D., Kane, L. P., Qian, D. & Weiss, A. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17, 5647–5657 (1998).
    Article CAS Google Scholar
  40. Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996).
    Article CAS Google Scholar
  41. Kelley, C. A. et al. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J. Cell Biol. 134, 675–687 (1996).
    Article CAS Google Scholar

Download references