Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading (original) (raw)
References
Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996). ArticleCAS Google Scholar
Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science273, 245–248 (1996). ArticleCAS Google Scholar
Jalink, K., Hengeveld, T., Morii, N., Narumiya, S. & Moolenaar, W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol.126, 801–810 (1994). ArticleCAS Google Scholar
Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)- regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol.141, 1625–1636 (1998). ArticleCAS Google Scholar
van Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol.139, 797–807 (1997). ArticleCAS Google Scholar
Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42 Hs, Rac1 and acetylcholine, and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol.17, 1201–1211 (1997). ArticleCAS Google Scholar
Lim, L., Manser, E., Leung, T. & Hall, C. Regulation of phosphorylation pathways by p21 GTPases. Eur. J. Biochem.242, 171–185 (1996). ArticleCAS Google Scholar
Sander, E. E. et al. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol.143, 1385–1398 (1998). ArticleCAS Google Scholar
Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature367, 40–46 (1994). ArticleCAS Google Scholar
Michiels, F., Habets, G. G. M., Stam, J. C., Van der Kammen, R. A. & Collard, J. G. A role for Rac-1 in Tiam1 induced membrane ruffling and T-lymphoma invasion. Nature375, 338–340 (1995). ArticleCAS Google Scholar
Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42HS and Bradykinin promote the formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol.15, 1942–1952 (1995). ArticleCAS Google Scholar
Nobes, C. D. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell81, 53–62 (1995). ArticleCAS Google Scholar
Sells, M. A. et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr. Biol.7, 202–210 (1997). ArticleCAS Google Scholar
Manser, E. et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell Biol.17, 1129–1143 (1997). ArticleCAS Google Scholar
Daniels, R. H., Hall, P. S. & Bokoch, G. M. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J.17, 754–764 (1998). ArticleCAS Google Scholar
Tang, Y. et al. Kinase deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell. Biol.17, 4454–4464 (1997). ArticleCAS Google Scholar
King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature396, 180–183 (1998). ArticleCAS Google Scholar
Fasolato, C., Pandiella, A., Meldolesi, J. & Pozzan, T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J. Biol. Chem.263, 17350–17359 (1988). CASPubMed Google Scholar
Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature368, 140–144 (1994). ArticleCAS Google Scholar
Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol.12, 463–518 (1996). ArticleCAS Google Scholar
Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol.133, 1403–1415 (1996). ArticleCAS Google Scholar
Tan, J. L., Ravid, S. & Spudich, J. A. Control of nonmuscle myosins by phosphorylation. Annu. Rev. Biochem.61, 721–759 (1992). ArticleCAS Google Scholar
Ludowyke, R. I., Peleg, I., Beaven, M. A. & Adelstein, R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J. Biol. Chem.264, 12492–12501 (1989). CASPubMed Google Scholar
Spudich, A. Myosin reorganization in activated RBL cells correlates temporally with stimulated secretion. Cell Motil. Cytoskeleton29, 345–353 (1994). ArticleCAS Google Scholar
Wilson, J. R., Ludowyke, R. I. & Biden, T. J. Nutrient stimulation results in a rapid Ca2+-dependent threonine phosphorylation of myosin heavy chain in rat pancreatic islets and RINm5F cells. J. Biol. Chem.273, 22729–22737 (1998). ArticleCAS Google Scholar
Brzeska, H. & Korn, E. D. Regulation of class I and class II myosins by heavy chain phosphorylation. J. Biol. Chem.271, 16983–16986 (1996). ArticleCAS Google Scholar
Egelhoff, T. T., Lee, R. J. & Spudich, J. A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell75, 363–371 (1993). ArticleCAS Google Scholar
Murakami, N., Chauhan, V. P. & Elzinga, M. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry37, 1989–2003 (1998). ArticleCAS Google Scholar
Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell84, 371–379 (1996). ArticleCAS Google Scholar
Peppelenbosch, M. P. et al. Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J. Biol Chem.271, 7883–7886 (1996). ArticleCAS Google Scholar
Lee, S. F., Egelhoff, T. T., Mahasneh, A. & Cote, G. P. Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J. Biol Chem.271, 27044–27048 (1996). ArticleCAS Google Scholar
Brzeska, H., Szczepanowska, J., Hoey, J. & Korn, E. D. The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21- activated kinase (PAK). J. Biol Chem.271, 27056–27062 (1996). ArticleCAS Google Scholar
Wu, C. et al. Activation of myosin-I by members of the Ste20p protein family. J. Biol Chem.271, 31787–31790 (1996). ArticleCAS Google Scholar
Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science283, 2083–2085 (1999). ArticleCAS Google Scholar
Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol.145, 837–849 (1999). ArticleCAS Google Scholar
Ramos, E., Wysolmerski, R. B. & Masaracchia, R. A. Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept. Signal Transduct.7, 99–110 (1997). CASPubMed Google Scholar
Van Eyk, J. E. et al. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+- independent contraction of smooth muscle. J. Biol Chem.273, 23433–23439 (1998). ArticleCAS Google Scholar
Yablonski, D., Kane, L. P., Qian, D. & Weiss, A. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J.17, 5647–5657 (1998). ArticleCAS Google Scholar
Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther.7, 1405–1413 (1996). ArticleCAS Google Scholar
Kelley, C. A. et al. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J. Cell Biol.134, 675–687 (1996). ArticleCAS Google Scholar