Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling (original) (raw)

References

  1. Cheatham, B. & Kahn, C.R. Insulin action and the insulin signaling network. Endocr. Rev. 16, 117– 142 (1995).
    CAS PubMed Google Scholar
  2. LeRoith, D., Werner, H., Beitner-Johnson, D. & Roberts, C. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16, 143–163 (1995).
    Article CAS PubMed Google Scholar
  3. Baserga, R., Hongo, A., Rubini, M., Prisco, M. & Valentinis, B. The IGF-I receptor in cell growth, transformation, and apoptosis. Biochem. Biophys. Acta 1332, F105–F126(1997).
    CAS PubMed Google Scholar
  4. Baserga, R. Oncogenes and the strategy of growth factors. Cell 79, 927–930 (1994).
    Article CAS PubMed Google Scholar
  5. White, M.F. & Kahn, C.R. The insulin signaling system. J. Biol. Chem. 269, 1–4 (1994).
    CAS PubMed Google Scholar
  6. Myers, M.G. Jr et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol3′-kinase. Endocrinology 132, 1421–1430 (1993).
    Article CAS PubMed Google Scholar
  7. Liu, J.P., Baker, J., Perkins, J.A., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).
    CAS PubMed Google Scholar
  8. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).
    Article CAS PubMed Google Scholar
  9. Kulkarni, R.N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).
    Article CAS PubMed Google Scholar
  10. Sun, X.J. et al. The expression and function of IRS-1 in insulin signal transmission. J. Biol. Chem. 267, 22662– 22672 (1992).
    CAS PubMed Google Scholar
  11. Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signaling. Nature 377, 173–177 ( 1995).
    Article CAS PubMed Google Scholar
  12. Bernal, D. et al. Amino acid polymorphisms are not associated with random type 2 diabetes among Caucasians. Diabetes 47, 976–979 (1998).
    Article CAS PubMed Google Scholar
  13. Withers, D.J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–903 ( 1998).
    Article CAS PubMed Google Scholar
  14. Araki, E. et al. Alternative pathway of insulin signalling in mice with targetted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).
    Article CAS PubMed Google Scholar
  15. Yamauchi, T. et al. Insulin signaling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell. Biol. 16, 3074–3084 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  16. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).
    Article CAS PubMed Google Scholar
  17. Herrera, P.L. et al. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113, 1257–1265 (1991).
    CAS PubMed Google Scholar
  18. LeRoith, D., Parrizas, M. & Blakesley, V.A. The insulin-like growth factor-I receptor and apoptosis. Implications for the aging process. Endocrine 7, 103–105 (1997).
    Article CAS Google Scholar
  19. Yenush, L., Zanella, C., Uchida, T., Bernal, D. & White, M.F. The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol. Cell. Biol. 18, 6784– 6794 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  20. Scaglia, L., Smith, F.E. & Bonner-Weir, S. Apoptosis contributes to the involution of β cell mass in the post partum rat pancreas. Endocrinology 136, 5461–5468 (1995).
    Article CAS PubMed Google Scholar
  21. Scaglia, L., Cahill, C.J., Finegood, D.T. & Bonner-Weir, S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138, 1736– 1741 (1997).
    Article CAS PubMed Google Scholar
  22. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).
    Article CAS PubMed Google Scholar
  23. Bruning, J.C., Winnay, J., Cheatham, B. & Kahn, C.R. Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1 deficient cells. Mol. Cell. Biol. 17, 1513– 1521 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  24. Rother, K.I. et al. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 273, 17491–17497 (1998).
    Article CAS PubMed Google Scholar
  25. Velloso, L.A., Carneiro, E.M., Crepaldi, S.C., Boschero, A.C. & Saad, M.J. Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. Growth Regul. 377, 353 –357 (1995).
    CAS Google Scholar
  26. Schuppin, G.T. et al. A specific increased expression of insulin receptor substrate 2 in pancreatic β-cell lines is involved with mediating serum-stimulated β-cell growth. Diabetes 47, 1074– 1085 (1998).
    Article CAS PubMed Google Scholar
  27. Hugl, S.R., White, M.F. & Rhodes, C.J. IGF-1 stimulated pancreatic β-cell growth is glucose dependent: synergistic activation of IRS-mediated signal transduction pathways by glucose and IGF-1 in INS-1 cells. J. Biol. Chem. 273, 17771–17779 (1998).
    Article CAS PubMed Google Scholar
  28. Sawka-Verhelle, D. et al. Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J. Biol. Chem. 272, 16414–16420 (1997).
    Article CAS PubMed Google Scholar
  29. Sawka-Verhelle, D., Tartare-Deckert, S., White, M.F. & Van Obberghen, E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J. Biol. Chem. 271, 5980– 5983 (1996).
    Article CAS PubMed Google Scholar
  30. Vaisse, C., Kim, J., Espinosa, R. III, Lebeau, M.M. & Stoffel, M. Pancreatic islet expression studies and polymorphic DNA markers in the genes encoding hepatocyte nuclear factor-3×, -3β, -3γ, -4γ, and -6. Diabetes 48 , 1364–1367 (1997).
    Article Google Scholar
  31. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  32. Edlund, H. Transcribing pancreas. Diabetes 47, 1817 –1823 (1998).
    Article CAS PubMed Google Scholar
  33. Sharma, S. et al. Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1. Mol. Cell. Biol. 17, 2598–2604 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  34. Guz, Y. et al. Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–18 (1995).
    CAS PubMed Google Scholar
  35. Baker, J., Liu, J.P., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 ( 1993).
    Article CAS PubMed Google Scholar
  36. Swenne, I. Pancreatic β-cell growth and diabetes mellitus. Diabetologia 35, 193–201 ( 1992).
    Article CAS PubMed Google Scholar

Download references