Genomic instability in Gadd45a-deficient mice (original) (raw)

References

  1. Kastan, M.B. et al. A mammalian cell cycle checkpoint utilizing p53 and GADD45 is defective in ataxia telangiectasia. Cell 71 , 587–597 (1992).
    Article CAS Google Scholar
  2. Zhan, Q., Chen, I.T., Antinore, M.J. & Fornace, A.J. Jr Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol. Cell. Biol. 18, 2768–2778 (1998).
    Article CAS Google Scholar
  3. Amundson, S.A., Myers, T.G. & Fornace, A.J. Jr Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17, 3287–3300 ( 1998).
    Article Google Scholar
  4. Harkin, D.P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).
    Article CAS Google Scholar
  5. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).
    Article CAS Google Scholar
  6. Sah, V.P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).
    Article CAS Google Scholar
  7. Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).
    Article CAS Google Scholar
  8. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).
    Article CAS Google Scholar
  9. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).
    Article CAS Google Scholar
  10. Smith, M.L. et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376– 1380 (1994).
    Article CAS Google Scholar
  11. Kearsey, J.M., Coates, P.J., Prescott, A.R., Warbrick, E. & Hall, P.A. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11, 1675–1683 (1995).
    CAS PubMed Google Scholar
  12. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 ( 1998).
    Article CAS Google Scholar
  13. Zhan, Q. et al. Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892–2900 (1999).
    Article CAS Google Scholar
  14. Carrier, F. et al. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol. 19, 1673–1685 (1999).
    Article CAS Google Scholar
  15. Wang, X.W. et al. Gadd45 induction of a G2-M cell cycle checkpoint. Proc. Natl Acad. Sci. USA 96, 3706– 3711 (1999).
    Article CAS Google Scholar
  16. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).
    Article CAS Google Scholar
  17. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).
    Article CAS Google Scholar
  18. Zimmerman, W., Sparks, C.A. & Doxsey, S.J. Amorphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11, 122– 128 (1999).
    Article CAS Google Scholar
  19. Pockwinse, S.M. et al. Cell cycle independent interaction of CDC2 with the centrosome, which is associated with the nuclear matrix-intermediate filament scaffold. Proc. Natl Acad. Sci. USA 94, 3022– 3027 (1997).
    Article CAS Google Scholar
  20. Fero, M.L., Randel, E., Gurley, K.E., Roberts, J.M. & Kemp, C.J. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396, 177– 180 (1998).
    Article CAS Google Scholar
  21. Kemp, C.J., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genet. 8, 66– 69 (1994).
    Article CAS Google Scholar
  22. Bouffler, S.D., Kemp, C.J., Balmain, A. & Cox, R. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 55, 3883–3889 (1995).
    CAS PubMed Google Scholar
  23. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).
    Article CAS Google Scholar
  24. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).
    Article CAS Google Scholar
  25. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).
    Article CAS Google Scholar
  26. Hendzel, M.J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 ( 1997).
    Article CAS Google Scholar
  27. Hennings, H. et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245 –254 (1980).
    Article CAS Google Scholar
  28. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).
    Article CAS Google Scholar
  29. Nelson-Rees, W.A., Hunter, L., Darlington, G.J. & O'Brien, S.J. Characteristics of HeLa strains: permanent vs. variable features. Cytogenet. Cell Genet. 27, 216–231 (1980).
    Article CAS Google Scholar
  30. Wang, X. Gorospe, M. & Holbrook, N.J. gadd45 is not required for activation of c-jun N-terminal kinase or p38 during acute stress. J. Biol. Chem. (in press).

Download references