G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action (original) (raw)

References

  1. Hille, B Ionic Channels of Excitable Membranes 115–130 (Sinauer, Sunderland, Massachusetts, 1992).
    Google Scholar
  2. Wann, K. T. Neuronal sodium and potassium channels: structure and function. Br. J. Anaesth. 71, 2–14 (1993).
    Article CAS Google Scholar
  3. Jan, L. Y. & Jan, Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20, 91–123 (1997).
    Article CAS Google Scholar
  4. Yost, C. S. Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology 90, 1186–1203 (1999).
    Article CAS Google Scholar
  5. Urban, B. W. Differential effects of gaseous and volatile anaesthetics on sodium and potassium channels. Br. J. Anaesth. 71, 25–38 (1993).
    Article CAS Google Scholar
  6. Elliott, J. R., Elliott, A. A., Harper, A. A. & Winpenny, J. P. Effects of general anaesthetics on neuronal sodium and potassium channels. Gen. Pharmacol. 23, 1005–1011 (1992).
    Article CAS Google Scholar
  7. Covarrubias, M., Vyas, T. B., Escobar, L. & Wei, A. Alcohols inhibit a cloned potassium channel at a discrete saturable site. Insights into the molecular basis of general anesthesia. J. Biol. Chem. 270, 19408–19416 (1995).
    Article CAS Google Scholar
  8. Leonoudakis, D. et al. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J. Neurosci. 18, 868–877 (1998).
    Article CAS Google Scholar
  9. Dopico, A. M., Lemos, J. R. & Treistman, S. N. Ethanol increases the activity of large conductance, Ca(2+)-activated K+ channels in isolated neurohypophysial terminals. Mol. Pharmacol. 49, 40–48 (1996).
    CAS PubMed Google Scholar
  10. Dascal, N. Signalling via the G protein-activated K+ channels. Cell Signal. 9, 551–573 (1997).
    Article CAS Google Scholar
  11. North, R. A. Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–28 (1989).
    Article CAS Google Scholar
  12. Hille, B. G protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195 (1992).
    Article CAS Google Scholar
  13. Krapivinsky, G. et al. Gβγ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation. J. Biol. Chem. 273, 16946–16952 (1998).
    Article CAS Google Scholar
  14. Huang, C. L., Jan, Y. N. & Jan, L. Y. Binding of the G protein βγ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett. 405, 291–298 (1997).
    Article CAS Google Scholar
  15. Kunkel, M. T. & Peralta, E. G. Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83, 443–449 (1995).
    Article CAS Google Scholar
  16. Huang, C. L., Slesinger, P. A., Casey, P. J., Jan, Y. N. & Jan, L. Y. Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15, 1133–1143 (1995).
    Article CAS Google Scholar
  17. Krapivinsky, G., Krapivinsky, L., Wickman, K. & Clapham, D. E. Gβγ binds directly to the G protein-gated K+ channel, _I_KACh. J. Biol. Chem. 270, 29059–29062 (1995).
    Article CAS Google Scholar
  18. Inanobe, A. et al. Gβγ directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1. Biochem. Biophys. Res. Comm. 212, 1022–1028 (1995).
    Article CAS Google Scholar
  19. Takao, K., Yoshii, M., Kanda, A., Kokubun, S. & Nukada, T. A region of the muscarinic-gated atrial K+ channel critical for activation by G protein βγ subunits. Neuron 13, 747–755 (1994).
    Article CAS Google Scholar
  20. Herlitze, S., Ruppersbergand, J. P. & Mark, M. D. New roles for RGS2, 5 and 8 on the ratio-dependent modulation of recombinant GIRK channels expressed in Xenopus oocytes. J. Physiol.(Lond.) 517, 341–352 (1999).
    Article CAS Google Scholar
  21. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).
    Article CAS Google Scholar
  22. Sui, J. L., Petit-Jacques, J. & Logothetis, D. E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. USA 95, 1307–1312 (1998).
    Article CAS Google Scholar
  23. Ponce, A. et al. G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J. Neurosci. 16, 1990–2001 (1996).
    Article CAS Google Scholar
  24. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).
    Article CAS Google Scholar
  25. Kovoor, A., Henry, D. J. & Chavkin, C. Agonist-induced desensitization of the μ opioid receptor-coupled potassium channel (GIRK1). J. Biol. Chem. 270, 589–595 (1995).
    Article CAS Google Scholar
  26. Wafford, K. A., Dunwiddie, T. V. & Harris, R. A. Calcium-dependent chloride currents elicited by injection of ethanol into Xenopus oocytes. Brain Res. 505, 215–219 (1989).
    Article CAS Google Scholar
  27. Coe, I. R., Yao, L., Diamond, I. & Gordon, A. S. The role of protein kinase C in cellular tolerance to ethanol. J. Biol. Chem. 271, 29468–29472 (1996).
    Article CAS Google Scholar
  28. Minami, K., Gereau, R. W. 4th, Minami, M., Heinemann, S. F. & Harris, R. A. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol. Pharmacol. 53, 148–156 (1998).
    Article CAS Google Scholar
  29. Wick, M. J. et al. Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc. Natl. Acad. Sci. USA 95, 6504–6509 (1998).
    Article CAS Google Scholar
  30. Li, C., Peoples, R. W. & Weight, F. F. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein. Proc. Natl. Acad. Sci. USA 91, 8200–8204 (1994).
    Article CAS Google Scholar
  31. Anantharam, V., Bayley, H., Wilson, A. & Treistman, S. N. Differential effects of ethanol on electrical properties of various potassium channels expressed in oocytes. Mol. Pharmacol. 42, 499–505 (1992).
    CAS PubMed Google Scholar
  32. Brodie, M. S. & Appel, S. B. The effects of ethanol on dopaminergic neurons of the ventral tegmental area studied with intracellular recording in brain slices. Alcohol. Clin. Exp. Res. 22, 236–244 (1998).
    Article CAS Google Scholar
  33. Schroeder, B. C., Kubisch, C., Stein, V. & Jentsch, T. J. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396, 687–690 (1998).
    Article CAS Google Scholar
  34. Dildy-Mayfield, J. E., Mihic, S. J., Liu, Y., Deitrich, R. A. & Harris, R. A. Actions of long chain alcohols on GABAA and glutamate receptors: relation to in vivo effects. Br. J. Pharmacol. 118, 378–384 (1996).
    Article CAS Google Scholar
  35. Mascia, M. P., Machu, T. K. & Harris, R. A. Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Br. J. Pharmacol. 119, 1331–1336 (1996).
    Article CAS Google Scholar
  36. Plapp, B. V., Green, D. W., Sun, H. W., Park, D. H. & Kim, K. Substrate specificity of alcohol dehydrogenases. Adv. Exp. Med. Biol. 328, 391–400 (1993).
    Article CAS Google Scholar
  37. Patel, A. J. et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 2, 422–426 (1999).
    Article CAS Google Scholar
  38. Karschin, C., Dissmann, E., Stuhmer, W. & Karschin, A. IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570 (1996).
    Article CAS Google Scholar
  39. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).
    Article CAS Google Scholar
  40. Korn, S. J., Marty, A., Connor, J. A. & Horn, R. Perforated patch recording. Methods Neurosci. 4, 264–373 (1991).
    Google Scholar
  41. Mihic, S. J., McQuilkin, S. J., Eger, E. I. 2nd, Ionescu, P. & Harris, R. A. Potentiation of γ-aminobutyric acid type A receptor-mediated chloride currents by novel halogenated compounds correlates with their abilities to induce general anesthesia. Mol. Pharmacol. 46, 851–857 (1994).
    CAS PubMed Google Scholar
  42. Dildy-Mayfield, J. E. & Harris, R. A. Comparison of ethanol sensitivity of rat brain kainate, DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone proprionic acid and _N-_methyl-D-aspartate receptors expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 262, 487–494 (1992).
    CAS PubMed Google Scholar
  43. Sonders, M. S., Zhu, S. J., Zahniser, N. R., Kavanaugh, M. P. & Amara, S. G. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974 (1997).
    Article CAS Google Scholar
  44. Levin, L. R. & Reed, R. R. Identification of functional domains of adenylyl cyclase using in vivo chimeras. J. Biol. Chem. 270, 7573–7579 (1995).
    Article CAS Google Scholar
  45. Kim, J. Y. & Devreotes, P. N. Random chimeragenesis of G-protein-coupled receptors. Mapping the affinity of the cAMP chemoattractant receptors in Dictyostelium. J. Biol. Chem. 269, 28724–28731 (1994).
    CAS PubMed Google Scholar
  46. Alifimoff, J. K., Firestone, L. L. & Miller, K. W. Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 96, 9–16 (1989).
    Article CAS Google Scholar

Download references