A diffusion barrier maintains distribution of membrane proteins in polarized neurons (original) (raw)

References

  1. Mellman, I. Molecular sorting of membrane proteins in polarized and non-polarized cells. Cold Spring Harb. Symp. Quant. Biol. 60, 745–752 (1996).
    Article Google Scholar
  2. Winckler, B. & Poo, M.-m. No diffusion barrier at axon hillock. Nature 379, 213 (1996).
    Article ADS CAS Google Scholar
  3. Vogt, L. et al. Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane. Curr. Biol. 6, 1153–1158 (1996).
    Article CAS Google Scholar
  4. Dotti, C. G., Parton, R. G. & Simons, K. Polarized sorting of glypiated proteins in hippocampal neurons. Nature 349, 156–161 (1991).
    Article ADS Google Scholar
  5. Kobayashi, T., Storrie, B., Simons, K. & Dotti, C. G. A functional barrier to movements of lipids in polarized neurons. Nature 359, 647–650 (1992).
    Article ADS CAS Google Scholar
  6. Kusumi, A., Sako, Y., Fujiwara, T. & Tomishige, M. Application of laser tweezers to studies of the fences and tethers of the membrane skeleton that regulate the movements of plasma membrane proteins. Methods Cell Biol. 55, 173–194 (1998).
    Article CAS Google Scholar
  7. Dai, J. & Sheetz, M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys. J. 68, 988–996 (1995).
    Article ADS CAS Google Scholar
  8. Lamaze, C., Fijimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332 (1997).
    Article CAS Google Scholar
  9. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).
    Article ADS CAS Google Scholar
  10. Simons, K. & Ikonen, E. functional rafts in cell membranes. Nature 387, 569–572 (1997).
    Article ADS CAS Google Scholar
  11. Peters, A., Proskauer, C. C. & Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex: the axon hillock and initial segment. J. Cell Biol. 39, 604–619 (1968).
    Article CAS Google Scholar
  12. Bartlett, W. P. & Banker, G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J. Neurosci. 4, 1944 (1984).
    Article CAS Google Scholar
  13. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG: a new ankyrin gene with neural-specific isoforms localized at the initial segment and Node of Ranvier. J. Biol. Chem. 270, 2352–2359 (1995).
    Article CAS Google Scholar
  14. Butler, M. H. et al. Amphiphysin II (SH3P9;BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and Nodes of Ranvier in brain and around T tubules in skeletal muscle. J. Cell Biol. 137, 1355–1367 (1997).
    Article CAS Google Scholar
  15. Davis, J. Q. & Bennett, V. Ankyrin binding activity shared by neural fascin/L1/NrCAM family of nervous system cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol. 137, 703–714 (1997).
    Article Google Scholar
  16. Garver, T. D., Ren, Q., Tuvia, S. & Bennett, V. Tyrosine phosphorylation at a site highly conserved in the L1 family of adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol. 137, 703–714 (1997).
    Article CAS Google Scholar
  17. Zhou, D. et al. Ankyrin G is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295 (1998).
    Article CAS Google Scholar
  18. Angelides, K. J., Elmer, L. W., Loftus, D. & Elson, E. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J. Cell Biol. 106, 1911 (1988).
    Article CAS Google Scholar
  19. Dargent, B. et al. Targeting of the voltage-dependent sodium channel to the axon of cultured hippocampal neurons. Soc. Neurosci. Abstr. 24, 1078 (1998).
    Google Scholar
  20. Sheetz, M. P. Glycoprotein mobility and dynamic domains in fluid membranes. Annu. Rev. Biophys. Biomol. Struct. 22, 417 (1993).
    Article CAS Google Scholar
  21. Bartles, J. R. The spermatid membrane comes of age. Trends Cell Biol. 5, 400–407 (1995).
    Article CAS Google Scholar
  22. Banker, G. & Goslin, K. (eds) Culturing Nerve Cells(MIT Press, Cambridge, Massachusetts, (1997).
    Google Scholar
  23. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B-27 supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).
    Article CAS Google Scholar
  24. Thompson, C., Lin, C. H. & Forscher, P. An Aplysia cell adhesion molecule associated with site-directed actin filament assembly in neuronal growth cones. J. Cell Sci. 109, 2843–2854 (1996).
    CAS PubMed Google Scholar
  25. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).
    Article CAS Google Scholar
  26. Jareb, M. & Banker, G. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron 20, 855 (1998).
    Article CAS Google Scholar

Download references