Structure of importin-β bound to the IBB domain of importin-α (original) (raw)

References

  1. Görlich, D. & Mattaj, I. W. Nucleocytoplasmic transport. Science 271, 1513– 1518 (1996).
    Article ADS Google Scholar
  2. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265 –306 (1998).
    Article CAS Google Scholar
  3. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem. Sci. 23, 185–189 ( 1998).
    Article CAS Google Scholar
  4. Doye, V. & Hurt, E. From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol. 9, 401– 411 (1997).
    Article CAS Google Scholar
  5. Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).
    Article CAS Google Scholar
  6. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences: a consensus? Trends Biochem. Sci. 16, 178– 181 (1991).
    Article Google Scholar
  7. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. Ashort amino acid sequence able to specify nuclear location. Cell 39, 499–509 ( 1984).
    Article CAS Google Scholar
  8. Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).
    Article CAS Google Scholar
  9. Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear import. Cell 79, 767–778 ( 1994).
    Article Google Scholar
  10. Weis, K., Mattaj, I. W. & Lamond, A. I. Identification of hSRP1α as a functional receptor for nuclear localization sequences. Science 268, 1049–1053 (1995).
    Article ADS CAS Google Scholar
  11. Moroianu, J., Blobel, G. & Radu, A. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complex. Proc. Natl Acad. Sci. USA 92, 2008–2011 (1995).
    Article ADS CAS Google Scholar
  12. Görlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392 ( 1995).
    Article Google Scholar
  13. Chi, N. C., Adam, E. J. H. & Adam, S. A. Sequence and characterization of cytoplasmic nuclear import factor p97. J. Cell Biol. 130, 265 –274 (1995).
    Article CAS Google Scholar
  14. Imamoto, N. et al. The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett. 368 , 415–419 (1995).
    Article CAS Google Scholar
  15. Radu, A., Blobel, G. & Moore, M. S. Identification of a protein complex that is required for nuclear import and mediates docking of import substrates to distinct nucleoporins. Proc. Natl Acad. Sci. USA 92, 1769– 1773 (1995).
    Article ADS CAS Google Scholar
  16. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 ( 1997).
    Article CAS Google Scholar
  17. Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett. 419, 249– 254 (1997).
    Article CAS Google Scholar
  18. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 ( 1998).
    Article CAS Google Scholar
  19. Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).
    Article Google Scholar
  20. Weis, K., Ryder, U. & Lamond, A. I. The conserved amino-terminal domain of hSRP1α is essential for nuclear import. EMBO J. 15, 1818–1825 (1996).
    Article CAS Google Scholar
  21. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol. 6, 388–397 ( 1999).
    Article CAS Google Scholar
  22. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153– 1163 (1997).
    Article CAS Google Scholar
  23. Chi, N. C. & Adam, S. A. Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore. Mol. Biol. Cell 8, 945– 956 (1997).
    Article CAS Google Scholar
  24. Chi, N. C., Adam, E. J. H. & Adam, S. A. Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J. Biol. Chem. 272, 6818–6822 (1997).
    Article CAS Google Scholar
  25. Görlich, D. et al. Anovel class of RanGTP binding proteins. J. Cell Biol. 138, 65–80 ( 1997).
    Article Google Scholar
  26. Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).
    Article CAS Google Scholar
  27. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 ( 1999).
    Article CAS Google Scholar
  28. Palacios, I., Hetzer, M., Adam, S. A. & Mattaj, I. W. Nuclear import of U snRNPs requires importin β. EMBO J. 16, 6783–6792 (1997).
    Article CAS Google Scholar
  29. Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).
    Article CAS Google Scholar
  30. Jäkel, S. & Görlich, D. Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491– 4502 (1998).
    Article Google Scholar
  31. Moore, J. D., Yang, J. Y., Truant, R. & Kornbluth, S. Nuclear import of Cdk/cyclin complexes: Identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144, 213–224 (1999).
    Article CAS Google Scholar
  32. Truant, R. & Cullen, B. R. The arginine-rich domains present in human immunodeficiency virus type I Tat and Rev function as direct importin β-dependent nuclear localization signals. Mol. Cell. Biol. 19, 1210–1217 (1999).
    Article CAS Google Scholar
  33. Palmeri, D. & Malim, M. H. Importin β can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin α. Mol. Cell. Biol. 19, 1218–1225 (1999).
    Article CAS Google Scholar
  34. Malik, H. S., Eickbush, T. H. & Goldfarb, D. S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl Acad. Sci. USA 97, 13738–13742 (1997).
    Article ADS Google Scholar
  35. Esnouf, R. M. et al. Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. Acta Crystallogr. D 54, 938–953 ( 1998).
    Article CAS Google Scholar
  36. Hayward, S. & Berendsen, H. J. C. Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins 30, 144– 154 (1996).
    Article Google Scholar
  37. Pollard, V. W. et al. Anovel receptor-mediated nuclear protein import pathway. Cell 86, 985–994 ( 1996).
    Article CAS Google Scholar
  38. Kutay, U. et al. Identification of a tRNA specific nuclear export receptor. Mol. Cell 1, 359–369 ( 1998).
    Article CAS Google Scholar
  39. Arts, G.-J., Fornerod, M. & Mattaj, I. W. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8, 305–314 (1998).
    Article CAS Google Scholar
  40. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).
    Article ADS CAS Google Scholar
  41. Vetter, I. R., Nowak, C., Nishimoto, T., Kühlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexes with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 ( 1999).
    Article ADS CAS Google Scholar
  42. Battiste, J. L. et al. α-Helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 273, 1547 –1551 (1996).
    Article ADS CAS Google Scholar
  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).
    Article CAS Google Scholar
  44. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–776 ( 1994).
    Article Google Scholar
  45. Terwillinger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1–5 (1987).
    Article Google Scholar
  46. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173– 208 (1997).
    Article CAS Google Scholar
  47. Brünger, A. T. et al. Crystallography and NMR system: A new software for macromolecular structure determination. Acta Crystallogr. C 54, 905–921 (1998).
    Google Scholar
  48. Kraulis, P. E. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).
    Article Google Scholar
  49. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbon. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar
  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958 –961 (1991).
    Article Google Scholar

Download references