Structure of importin-β bound to the IBB domain of importin-α (original) (raw)
References
Görlich, D. & Mattaj, I. W. Nucleocytoplasmic transport. Science271, 1513– 1518 (1996). ArticleADS Google Scholar
Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem.67, 265 –306 (1998). ArticleCAS Google Scholar
Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem. Sci.23, 185–189 ( 1998). ArticleCAS Google Scholar
Doye, V. & Hurt, E. From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol.9, 401– 411 (1997). ArticleCAS Google Scholar
Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell92, 327–336 (1998). ArticleCAS Google Scholar
Dingwall, C. & Laskey, R. A. Nuclear targeting sequences: a consensus? Trends Biochem. Sci.16, 178– 181 (1991). Article Google Scholar
Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. Ashort amino acid sequence able to specify nuclear location. Cell39, 499–509 ( 1984). ArticleCAS Google Scholar
Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell64, 615–623 (1991). ArticleCAS Google Scholar
Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear import. Cell79, 767–778 ( 1994). Article Google Scholar
Weis, K., Mattaj, I. W. & Lamond, A. I. Identification of hSRP1α as a functional receptor for nuclear localization sequences. Science268, 1049–1053 (1995). ArticleADSCAS Google Scholar
Moroianu, J., Blobel, G. & Radu, A. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complex. Proc. Natl Acad. Sci. USA92, 2008–2011 (1995). ArticleADSCAS Google Scholar
Görlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol.5, 383–392 ( 1995). Article Google Scholar
Chi, N. C., Adam, E. J. H. & Adam, S. A. Sequence and characterization of cytoplasmic nuclear import factor p97. J. Cell Biol.130, 265 –274 (1995). ArticleCAS Google Scholar
Imamoto, N. et al. The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett.368 , 415–419 (1995). ArticleCAS Google Scholar
Radu, A., Blobel, G. & Moore, M. S. Identification of a protein complex that is required for nuclear import and mediates docking of import substrates to distinct nucleoporins. Proc. Natl Acad. Sci. USA92, 1769– 1773 (1995). ArticleADSCAS Google Scholar
Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J.16, 6535–6547 ( 1997). ArticleCAS Google Scholar
Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett.419, 249– 254 (1997). ArticleCAS Google Scholar
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell94, 193–204 ( 1998). ArticleCAS Google Scholar
Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J.15, 1810–1817 (1996). Article Google Scholar
Weis, K., Ryder, U. & Lamond, A. I. The conserved amino-terminal domain of hSRP1α is essential for nuclear import. EMBO J.15, 1818–1825 (1996). ArticleCAS Google Scholar
Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol.6, 388–397 ( 1999). ArticleCAS Google Scholar
Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J.16, 1153– 1163 (1997). ArticleCAS Google Scholar
Chi, N. C. & Adam, S. A. Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore. Mol. Biol. Cell8, 945– 956 (1997). ArticleCAS Google Scholar
Chi, N. C., Adam, E. J. H. & Adam, S. A. Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J. Biol. Chem.272, 6818–6822 (1997). ArticleCAS Google Scholar
Görlich, D. et al. Anovel class of RanGTP binding proteins. J. Cell Biol.138, 65–80 ( 1997). Article Google Scholar
Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet.11, 115–116 (1995). ArticleCAS Google Scholar
Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell96, 99–110 ( 1999). ArticleCAS Google Scholar
Palacios, I., Hetzer, M., Adam, S. A. & Mattaj, I. W. Nuclear import of U snRNPs requires importin β. EMBO J.16, 6783–6792 (1997). ArticleCAS Google Scholar
Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J.17, 4114–4126 (1998). ArticleCAS Google Scholar
Jäkel, S. & Görlich, D. Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J.17, 4491– 4502 (1998). Article Google Scholar
Moore, J. D., Yang, J. Y., Truant, R. & Kornbluth, S. Nuclear import of Cdk/cyclin complexes: Identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol.144, 213–224 (1999). ArticleCAS Google Scholar
Truant, R. & Cullen, B. R. The arginine-rich domains present in human immunodeficiency virus type I Tat and Rev function as direct importin β-dependent nuclear localization signals. Mol. Cell. Biol.19, 1210–1217 (1999). ArticleCAS Google Scholar
Palmeri, D. & Malim, M. H. Importin β can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin α. Mol. Cell. Biol.19, 1218–1225 (1999). ArticleCAS Google Scholar
Malik, H. S., Eickbush, T. H. & Goldfarb, D. S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl Acad. Sci. USA97, 13738–13742 (1997). ArticleADS Google Scholar
Esnouf, R. M. et al. Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. Acta Crystallogr. D54, 938–953 ( 1998). ArticleCAS Google Scholar
Hayward, S. & Berendsen, H. J. C. Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins30, 144– 154 (1996). Article Google Scholar
Pollard, V. W. et al. Anovel receptor-mediated nuclear protein import pathway. Cell86, 985–994 ( 1996). ArticleCAS Google Scholar
Kutay, U. et al. Identification of a tRNA specific nuclear export receptor. Mol. Cell1, 359–369 ( 1998). ArticleCAS Google Scholar
Arts, G.-J., Fornerod, M. & Mattaj, I. W. Identification of a nuclear export receptor for tRNA. Curr. Biol.8, 305–314 (1998). ArticleCAS Google Scholar
Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature374, 378–381 (1995). ArticleADSCAS Google Scholar
Vetter, I. R., Nowak, C., Nishimoto, T., Kühlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexes with Ran bound to a GTP analogue: implications for nuclear transport. Nature398, 39–46 ( 1999). ArticleADSCAS Google Scholar
Battiste, J. L. et al. α-Helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science273, 1547 –1551 (1996). ArticleADSCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 ( 1997). ArticleCAS Google Scholar
Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–776 ( 1994). Article Google Scholar
Terwillinger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A43, 1–5 (1987). Article Google Scholar
Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol.277, 173– 208 (1997). ArticleCAS Google Scholar
Brünger, A. T. et al. Crystallography and NMR system: A new software for macromolecular structure determination. Acta Crystallogr. C54, 905–921 (1998). Google Scholar
Kraulis, P. E. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946 –950 (1991). Article Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbon. Proteins11, 281–296 (1991). ArticleCAS Google Scholar
Carson, M. Ribbons 2.0. J. Appl. Crystallogr.24, 958 –961 (1991). Article Google Scholar