Single kinesin molecules studied with a molecular force clamp (original) (raw)

References

  1. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).
    Article ADS CAS Google Scholar
  2. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).
    Article CAS Google Scholar
  3. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).
    Article ADS CAS Google Scholar
  4. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).
    Article ADS CAS Google Scholar
  5. Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998).
    Article CAS Google Scholar
  6. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).
    Article ADS CAS Google Scholar
  7. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).
    Article CAS Google Scholar
  8. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).
    Article ADS CAS Google Scholar
  9. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).
    Article ADS CAS Google Scholar
  10. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).
    Article CAS Google Scholar
  11. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).
    Article CAS Google Scholar
  12. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).
    Article ADS CAS Google Scholar
  13. Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).
    Article ADS Google Scholar
  14. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Topics Quantum. Electron. 2, 1066–1076 (1996).
    Article ADS CAS Google Scholar
  15. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    Article CAS Google Scholar
  16. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).
    Article ADS CAS Google Scholar
  17. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1996).
    Article Google Scholar
  18. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).
    Article ADS CAS Google Scholar
  19. Howard, J. The mechanics of force generation by kinesin. Biophys. J. 68, 245s–255s (1995).
    CAS PubMed PubMed Central Google Scholar
  20. Hackney, D. Kinesin ATPase: Rate-limiting ADP release. Proc. Natl Acad. Sci. USA 85, 6314–6318 (1988).
    Article ADS CAS Google Scholar
  21. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).
    Article ADS CAS Google Scholar
  22. Ma, Y. Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).
    Article CAS Google Scholar
  23. Svoboda, K., Mitra, P. P. & Block, S. M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl Acad. Sci. USA 91, 11782–11786 (1994).
    Article ADS CAS Google Scholar
  24. Schnitzer, M. J. & Block, S. M. Statistical kinetics of processive enzymes. Cold Spring Harbor Symp. Quant. Biol. 60, 793–802 (1995).
    Article CAS Google Scholar
  25. Samuel, A. D. T. & Berg, H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71, 918–923 (1996).
    Article ADS CAS Google Scholar
  26. Leibler, S. & Huse, D. A. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121, 1357–1368 (1993).
    Article CAS Google Scholar
  27. Peskin, C. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202s–211s (1995).
    Google Scholar
  28. Duke, T. & Leibler, S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71, 1235–1247 (1996).
    Article ADS CAS Google Scholar
  29. Derényi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl Acad. Sci. USA 93, 6775–6779 (1996).
    Article ADS Google Scholar
  30. Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).
    Article CAS Google Scholar
  31. Higuchi, H. & Yanagida, T. Force generation and detachment of single kinesin molecules activated by laser photolysis of caged ATP and ADP. Cell Struct. Funct. 23, suppl., 198 (1998).
    Google Scholar
  32. Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).
    Article ADS CAS Google Scholar

Download references