Nucleosome mobilization catalysed by the yeast SWI/SNF complex (original) (raw)

References

  1. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998).
    Article CAS PubMed Google Scholar
  2. Peterson, C. L. & Tamkun, J. W. The SWI–SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143–146 (1995).
    Article CAS PubMed Google Scholar
  3. Steger, D. J. & Workman, J. L. Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18, 875–884 (1996).
    Article CAS PubMed Google Scholar
  4. Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′LTR sequences. J.Mol. Biol. 275, 427–441 (1998).
    Article CAS PubMed Google Scholar
  5. Beard, P. Mobility of histones on the chromatin of simian virus 40. Cell 15, 955–967 (1978).
    Article CAS PubMed Google Scholar
  6. van Holde, K. E., Yager, T. D. in Structure and Function of the Genetic Apparatus (ed. Nicolini, C. T.) 35–53 (Plenum, New York, (1985). one ed. OK?
    Book Google Scholar
  7. Pennings, S., Meersseman, G. & Bradbury, E. M. Mobility of positioned nucleosomes on 5S rDNA. J.Mol. Biol. 220, 101–110 (1991).
    Article CAS PubMed Google Scholar
  8. Pazin, M. J., Bhargava, P., Geiduschek, E. P. & Kadonaga, J. T. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812 (1997).
    Article CAS PubMed Google Scholar
  9. Varga-Weisz, P. D. & Becker, P. B. Chromatin-remodeling factors: machines that regulate? Curr. Opin. Cell Biol. 10, 346–353 (1998).
    Article CAS PubMed Google Scholar
  10. Owen-Hughes, T., Utley, R. T., Cole, J., Peterson, C. L. & Workman, J. L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).
    Article ADS CAS PubMed Google Scholar
  11. Lorch, Y., Zhang, M. & Kornberg, R. D. Histone octamer transfer by a chromatin-remodelling complex. Cell 96, 389–392 (1999).
    Article CAS PubMed Google Scholar
  12. Grigoriev, M. & Hsieh, P. Ahistone octamer blocks branch migration of a Holliday junction. Mol. Cell. Biol. 17, 7139–7150 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  13. Quinn, J., Fyrberg, A. M., Ganster, R. W., Schmidt, M. C. & Peterson, C. L. DNA-binding properties of the yeast SWI/SNF complex. Nature 379, 844–847 (1996).
    Article ADS CAS PubMed Google Scholar
  14. Cairns, B. R., Erdjument-Bromage, H., Tempst, P., Winston, F. & Kornberg, R. D. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell. 2, 639–651 (1998).
    Article CAS PubMed Google Scholar
  15. Logie, C. & Peterson, C. L. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J. 16, 6772–6782 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  16. Lorch, Y., Cairns, B. R., Zhang, M. & Kornberg, R. D. Activated RSC–nucleosome complex and persistently altered form of the nucleosome. Cell 94, 29–34 (1998).
    Article CAS PubMed Google Scholar
  17. Schnitzler, G., Sif, S. & Kingston, R. E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94, 17–27 (1998).
    Article CAS PubMed Google Scholar
  18. Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).
    Article ADS PubMed Google Scholar
  19. Côté, J., Peterson, C. L. & Workman, J. L. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl Acad. Sci. USA 95, 4947–4952 (1998).
    Article ADS PubMed PubMed Central Google Scholar
  20. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).
    Article ADS CAS PubMed Google Scholar
  21. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).
    Article CAS PubMed Google Scholar
  22. Fryer, C. J. & Archer, T. K. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88–91 (1998).
    Article ADS CAS PubMed Google Scholar
  23. Varga-Weisz, P. D., Blank, T. A. & Becker, P. Energy-dependent chromatin accessibility and nucleosome mobility in a cell-free system. EMBO J. 14, 2209–2216 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  24. Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997); erratum, ibid. 389, 1003 (1997).
    Article ADS CAS PubMed Google Scholar
  25. Tsukiyama, T. & Wu, C. Purification and properties of an ATP dependent nucleosome remodeling factor. Cell 83, 1011–1020 (1995).
    Article CAS PubMed Google Scholar
  26. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utlizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).
    Article CAS PubMed Google Scholar
  27. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
    Article CAS PubMed Google Scholar
  28. Murphy, D. J., Hardy, S. & Engel, D. A. Human SWI–SNF component BRG1 represses transcription of the c-fos gene. Mol. Cell. Biol. 19, 2724–2733 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  29. Duckett, D. R. et al. The structure of the Holliday junction, and its resolution. Cell 55, 79–89 (1988).
    Article CAS PubMed Google Scholar

Download references