Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis (original) (raw)
- Letter
- Published: 05 April 1984
Nature volume 308, pages 548–550 (1984)Cite this article
- 5304 Accesses
- 28 Altmetric
- Metrics details
Abstract
It has been suggested that the failure of parthenogenetic mouse embryos to develop to term is primarily due to their aberrant cytoplasm and homozygosity leading to the expression of recessive lethal genes1. The reported birth of homozygous gynogenetic (male pronucleus removed from egg after fertilization) mice and of animals following transplantation of nuclei from parthenogenetic embryos to enucleated fertilized eggs2,3, is indicative of abnormal cytoplasm and not an abnormal genotype of the activated eggs. However, we4 and others5,6 have been unable to obtain such homozygous mice. We investigated this problem further by using reconstituted heterozygous eggs, with haploid parthenogenetic eggs as recipients for a male or female pronucleus. We report here that the eggs which receive a male pronucleus develop to term but those with two female pronuclei develop only poorly after implantation. Therefore, the cytoplasm of activated eggs is fully competent to support development to term but not if the genome is entirely of maternal origin. We propose that specific imprinting of the genome occurs during gametogenesis so that the presence of both a male and a female pronucleus is essential in an egg for full-term development. The paternal imprinting of the genome appears necessary for the normal development of the extraembryonic membranes and the trophoblast.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Graham, C. F. Biol. Rev. 49, 399–422 (1974).
Article CAS PubMed Google Scholar - Hoppe, P. C. & Illmensee, K. Proc. natn. Acad. Sci. U.S.A. 74, 5657–5661 (1977).
Article ADS CAS Google Scholar - Hoppe, P. C. & Illmensee, K. Proc. natn. Acad. Sci. U.S.A. 79, 1912–1916 (1982).
Article ADS CAS Google Scholar - Surani, M. A. H. & Barton, S. C. Science 222, 1034–1036 (1983).
Article ADS CAS PubMed Google Scholar - Modlinski, J. A. J. Embryol. exp. Morph. 60, 153–161 (1980).
CAS PubMed Google Scholar - Markert, C. L. J. Hered. 73, 390–397 (1982).
Article CAS PubMed Google Scholar - Kaufman, M. H., Barton, S. C. & Surani, M. A. H. Nature 265, 53–55 (1977).
Article ADS CAS PubMed Google Scholar - Surani, M. A. H., Barton, S. C. & Kaufman, M. H. Nature 270, 601–603 (1977).
Article ADS CAS PubMed Google Scholar - Sawicki, J. A., Magnuson, T. & Epstein, C. J. Nature 294, 450–451 (1981).
Article ADS CAS PubMed Google Scholar - West, J. D., Frels, W. I., Chapman, V. M. & Papaioannou, V. E. Cell 12, 873–882 (1977).
Article CAS PubMed Google Scholar - Takagi, N., Wake, N. & Sasaki, M. Cytogenet. Cell Genet. 20, 240–248 (1978).
Article CAS PubMed Google Scholar - Harper, M. I., Fosten, M. & Monk, M. J. Embryol. exp. Morph. 67, 127–135 (1982).
CAS PubMed Google Scholar - Endo, S. & Takagi, N. Jap. J. Genet. 56, 349–356 (1981).
Article CAS Google Scholar - Rastan, S., Kaufman, M. H., Handyside, A. H. & Lyon, M. F. Nature 288, 172–173 (1980).
Article ADS CAS PubMed Google Scholar - Wakasugi, N. J. Reprod. Fert. 41, 85–96 (1974).
Article CAS Google Scholar - Stevens, L. C. Symp. Soc. dev. Biol. 33, 93–106 (1975).
Google Scholar - Iles, S. A., McBurney, M. W., Bramwell, S. R., Deussen, Z. A. & Graham, C. F. J. Embryol. exp. Morph. 34, 387–405 (1975).
CAS PubMed Google Scholar - Stevens, L. C., Varnum, D. S. & Eicher, E. M. Nature 269, 515–517 (1977).
Article ADS CAS PubMed Google Scholar - Whittingham, D. G. & Wales, R. G. Aust. J. biol. Sci. 22, 1065–1072 (1969).
Article CAS PubMed Google Scholar - Cuthbertson, K. S. R. J. exp. Zool. 226, 311–314 (1983).
Article CAS PubMed Google Scholar - Whittingham, D. G. J. Reprod. Fert. Suppl. 14, 7–21 (1971).
CAS Google Scholar - Barton, S. C. & Surani, M. A. H. Expl Cell Res. 146, 187–191 (1983).
Article CAS Google Scholar - McGrath, J. & Solter, D. Science 220, 1300–1302 (1983).
Article ADS CAS PubMed Google Scholar - Neff, J. M. & Enders, J. F. Proc. Soc. exp. Biol. Med. 127, 260–271 (1968).
Article CAS PubMed Google Scholar - Giles, R. E. & Ruddle, F. H. In Vitro 9, 103–108 (1973).
Article CAS PubMed Google Scholar - Graham, C. F. Acta endocr. Suppl. 153, 154–167 (1971).
Article CAS Google Scholar - Chapman, V. M., Whitten, W. K. & Ruddle, F. H. Devl Biol. 26, 153–161 (1971).
Article CAS Google Scholar - Markert, C. L. & Seidel, G. E. in New Technologies in Animal Breeding (eds Brackett, B. G., Seidel, G. E. & Seidel, S. M.) 181–199 (Academic, New York, 1981).
Google Scholar
Author information
Authors and Affiliations
- AFRC Institute of Animal Physiology, 307 Huntingdon Road, Cambridge, CB3 0JQ, UK
M. A. H. Surani, S. C. Barton & M. L. Norris
Authors
- M. A. H. Surani
You can also search for this author inPubMed Google Scholar - S. C. Barton
You can also search for this author inPubMed Google Scholar - M. L. Norris
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Surani, M., Barton, S. & Norris, M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.Nature 308, 548–550 (1984). https://doi.org/10.1038/308548a0
- Received: 05 December 1983
- Accepted: 27 February 1984
- Issue Date: 05 April 1984
- DOI: https://doi.org/10.1038/308548a0