An inositol tetrakisphosphate-containing phospholipid in activated neutrophils (original) (raw)

Nature volume 334, pages 353–356 (1988)Cite this article

Abstract

Inositol (l,4,5)trisphosphate (InsP3)1 and tetrakisphosphate (InsP4)2 have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells3. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2), whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase4. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type2. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain5, but this finding was later withdrawn6. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified7 and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Streb, H., Irvine, R. R., Berridge, M. J. & Schultz, I. Nature 306, 67–69 (1983).
    Article ADS CAS PubMed Google Scholar
  2. Irvine, R. F. & Moor, R. M. Biochem. J. 240, 917–920 (1986).
    Article CAS PubMed PubMed Central Google Scholar
  3. Morris, A. P., Gallacher, D. V., Irvine, R. F. & Petersen, O. H. Nature 330, 653–655 (1987).
    Article ADS CAS PubMed Google Scholar
  4. Irvine, R. F., Letcher, A. J., Heslop, J. P. & Berridge, M. J. Nature 320, 631–634 (1986).
    Article ADS CAS PubMed Google Scholar
  5. Santiago-Calvo, E., Mulè, S. J. & Hokin, L. E. Biochim. biophys. Acta 70, 91–93 (1963).
    Article CAS PubMed Google Scholar
  6. Santiago-Calvo, E., Mulè, S., Redman, C. M., Hokin, M. R. & Hokin, L. E. Biochim. biophys. Acta. 84, 550–562 (1964).
    CAS PubMed Google Scholar
  7. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Nature 332, 644–646 (1988).
    Article ADS CAS PubMed Google Scholar
  8. Goldstein, I. et al. Proc. natn. Acad. Sci. U.S.A. 70, 2916–2929 (1973).
    Article ADS CAS Google Scholar
  9. Malmsten, C. L. et al. Acta physiol. scand. 11, 449–451 (1980).
    Article Google Scholar
  10. Wright, C. G. & Hoffman, M. D. Biochem. biophys. Res. Comm. 142, 53–62 (1987).
    Article CAS PubMed Google Scholar
  11. Rider, L. G. & Neidel, J. E. J. biol Chem. 262, 5603–5609 (1987).
    CAS PubMed Google Scholar
  12. Lew, P. D., Wollheim, C. B., Waldvogel, F. A. & Pozzan, T. J. cell Biol. 99, 1212–1220 (1984).
    Article CAS PubMed Google Scholar
  13. Grinstein, S. & Furuya, W. J. biol. Chem. 263, 1779–1782 (1988).
    CAS PubMed Google Scholar
  14. Sklar, L. A. et al. J. biol. Chem. 259, 5661–5669 (1984).
    CAS PubMed Google Scholar
  15. Hawkins, P. T., Michell, R. H. & Kirk, C. J. Biochem. J. 218, 785–793 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  16. Clarke, N. G. & Dawson, R. M. C. Biochem. J. 195, 301–306 (1981).
    Article CAS PubMed PubMed Central Google Scholar
  17. Stephens, L. et al. Biochem. J. 249, 271–282 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  18. Balla, T., Guillemette, G., Baukal, A. J. & Catt, K. J. J. biol. Chem. 262, 9952–9955 (1987).
    CAS PubMed Google Scholar
  19. Janmey, P. A., Iida, K., Yin, H. L. & Stossel, T. P. J. biol. Chem. 262, 122228–12236 (1987).
    Google Scholar
  20. Heslop, J. P., Irvine, R. F., Tashjian, A. H. & Berridge, M. J. exp. Biol. 119, 395–401 (1985).
    CAS PubMed Google Scholar
  21. Tolley, J. O., Omann, G. M. & Jesaitis, A. J. J. Leuk. Biol. 42, 43–50 (1987).
    Article CAS Google Scholar
  22. Schacht, J. J. Lipid Res. 19, 1063–1067 (1978).
    CAS PubMed Google Scholar
  23. Ambler, S. K., Thompson, B., Solski, P. A., Brown, J. H. & Taylor, P. Molec. Pharmac. 32, 376–383 (1987).
    CAS Google Scholar

Download references

Author information

Author notes

  1. Barbara L. Thompson and Palmer Taylor: Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA

Authors and Affiliations

  1. Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA, 92037, USA
    Alexis E. Traynor-Kaplan, Anna L. Harris, Barbara L. Thompson, Palmer Taylor & Larry A. Sklar

Authors

  1. Alexis E. Traynor-Kaplan
    You can also search for this author inPubMed Google Scholar
  2. Anna L. Harris
    You can also search for this author inPubMed Google Scholar
  3. Barbara L. Thompson
    You can also search for this author inPubMed Google Scholar
  4. Palmer Taylor
    You can also search for this author inPubMed Google Scholar
  5. Larry A. Sklar
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Traynor-Kaplan, A., Harris, A., Thompson, B. et al. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils.Nature 334, 353–356 (1988). https://doi.org/10.1038/334353a0

Download citation

This article is cited by