Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol.68, 251–306 (1980). ArticleCASPubMed Google Scholar
Compton, M. M. Abiochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metast. Rev.11, 105– 119 (1992). ArticleCAS Google Scholar
Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol.142, 66–77 (1984). Article Google Scholar
Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature284, 555– 556 (1980). ArticleADSCASPubMed Google Scholar
Peitsch, M. C. et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J.12, 371–377 ( 1993). ArticleCASPubMedPubMed Central Google Scholar
Montague, J. W., Hughes, F. J. & Cidlowski, J. A. Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylpropyl _cis-trans_-isomerase activity. Potential roles of cyclophilins in apoptosis. J. Biol. Chem.272, 6677–66784 ( 1997). ArticleCASPubMed Google Scholar
Barry, M. & Eastman, A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem. Biophys.300, 440–450 ( 1993). ArticleCASPubMed Google Scholar
Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell66, 233– 243 (1991). ArticleCASPubMed Google Scholar
Schulze-Osthoff, K., Walczak, H., Dröge, W. & Krammer, P. H. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell. Biol.127, 15– 20 (1994). ArticleCASPubMed Google Scholar
Enari, M., Hug, H. & Nagata, S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature375, 78–81 ( 1995). ArticleADSCASPubMed Google Scholar
Enari, M., Talanian, R. V., Wong, W. W. & Nagata, S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature380, 723– 726 (1996). ArticleADSCASPubMed Google Scholar
Armstrong, R. C. et al. Fas-induced activation of the cell death-related protease CPP32 is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem.271, 16850–16855 (1996). ArticleCASPubMed Google Scholar
Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell85, 817–827 ( 1996). ArticleCASPubMed Google Scholar
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell85, 803–815 (1996). ArticleCASPubMed Google Scholar
Henkart, P. A. ICE family protease: mediators of all apoptotic cell death? Immunity4, 195–201 ( 1996). ArticleCASPubMed Google Scholar
Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell89, 175– 184 (1997). ArticleCASPubMed Google Scholar
Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature391, 96– 99 (1998). ArticleADSCASPubMed Google Scholar
Blanar, M. A. & Rutter, W. J. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science256, 1014–1018 ( 1992). ArticleADSCASPubMed Google Scholar
Zakut, R. et al. Nucleotide sequence of the rat skeletal muscle actin gene. Nature298, 857–859 ( 1982). ArticleADSCASPubMed Google Scholar
Dingwall, C. & Laskey, R. Nuclear targeting sequences—a consensus? Trends Biol. Sci.16, 478– 481 (1991). ArticleCAS Google Scholar
Cohen, J. J., Duke, R. C., Fadok, V. A. & Sellins, K. S. Apoptosis and programmed cell death in immunity. Annu. Rev. Immunol.10, 267–293 ( 1992). ArticleCASPubMed Google Scholar
Shiokawa, D., Iwamatsu, A. & Tamura, S. Purification, characterization, and amino acid sequencing of DNase γ from rat spleen. Arch. Biochem. Biophys.346, 15–20 (1997). ArticleCASPubMed Google Scholar
Batistatou, A. & Green, L. Internucleosomal DNA cleavage and neuronal cell survival/death. J. Cell Biol.122, 523–532 (1993). ArticleCASPubMed Google Scholar
Mogil, R. et al. Role of DNA fragmentation in T cell activation-induced apoptosis in vitro and in vivo. J. Immunol.152, 1674–1683 (1994). CASPubMed Google Scholar
Verma, I., Stevenson, J., Schwarz, E., Van Antwerp, D. & Miyamoto, S. ReI/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev.9, 2723–2735 (1995). ArticleCASPubMed Google Scholar
Baldwin, A. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol.14, 649–681 (1996). ArticleCASPubMed Google Scholar
Beg, A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev.6, 1899–1913 (1992). ArticleCASPubMed Google Scholar
Wallis, R. et al. In vivo and in vitro characterization of overproduced colicin E9 immunity protein. Eur. J. Biochem.207, 687–695 (1992). ArticleCASPubMed Google Scholar
Hartl, F.-U., Hlodan, R. & Langer, T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biol. Sci.19, 20–25 (1994). ArticleCAS Google Scholar
Shi, G. et al. β-Subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron16, 843– 852 (1996). ArticleCASPubMed Google Scholar
Chen, P. & Hochstrasserr, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell86, 961–972 (1996). ArticleCASPubMed Google Scholar
Iwamatsu, A. S-carboxymethylation of proteins transferred onto polyvinylidine difluoride membranes followed by in situ protease digestion and amino acid microsequencing. Electrophoresis13, 142– 147 (1992). ArticleCASPubMed Google Scholar
Iwamatsu, A. & Yoshida-Kuboomura, N. Systematic peptide fragmentation of polyvinylidine difluoride (PVDF)-immobilized proteins prior to microsequencing. J. Biochem. (Tokyo)120, 29– 34 (1996). ArticleCAS Google Scholar
Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell75, 1169 –1178 (1993). ArticleCASPubMed Google Scholar
Hager, D. A. & Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichai coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Analyt. Biochem.109, 76– 86 (1980). ArticleCASPubMed Google Scholar