Eomesodermin is required for mouse trophoblast development and mesoderm formation (original) (raw)

References

  1. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).
    Article CAS PubMed Google Scholar
  2. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072 –2075 (1998).
    Article ADS CAS PubMed Google Scholar
  3. Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617– 622 (1990).
    Article ADS CAS PubMed Google Scholar
  4. Papaioannou, V. E. & Silver, L. M. The T-box gene family. Bioessays 20, 9– 19 (1998).
    Article CAS PubMed Google Scholar
  5. Smith, J. C. T-Box genes: What they do and how they do it. Trends Genet. 15, 154–158 (1999).
    Article CAS PubMed Google Scholar
  6. Hancock, S. N., Agulnik, S. I., Silver, L. M. & Papaioannou, V. E. Mapping and expression analysis of the mouse ortholog of Xenopus eomesodermin. Mech. Dev. 81, 205–208 (1999).
    Article CAS PubMed Google Scholar
  7. Ciruna, B. G. & Rossant, J. Expression of the T-box gene eomesodermin during early mouse development. Mech. Dev. 81, 199–203 (1999).
    Article CAS PubMed Google Scholar
  8. Bulfone, A. et al. Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain development. Mech. Dev. 84, 133–138 (1999).
    Article CAS PubMed Google Scholar
  9. Sutherland, A. E., Calarco, P. G. & Damsky, C. H. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J. Cell Biol. 106, 1331–1348 (1988).
    Article CAS PubMed Google Scholar
  10. Sutherland, A. E., Calarco, P. G. & Damsky, C. H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186 (1993).
    CAS PubMed Google Scholar
  11. Rossant, J. & Spence, A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 14, 358– 363 (1998).
    Article CAS PubMed Google Scholar
  12. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).
    CAS PubMed Google Scholar
  13. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).
    CAS PubMed Google Scholar
  14. Beddington, R. S. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277 –284 (1998).
    Article CAS PubMed Google Scholar
  15. Tada, M., Casey, E. S., Fairclough, L. & Smith, J. C. Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Development 125, 3997–4006 (1998).
    CAS PubMed Google Scholar
  16. Casey, E. S. et al. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126, 4193–4200 (1999).
    CAS PubMed Google Scholar
  17. Pearce, J. J. H. & Evans, M. J. Mml, a mouse Mix-like gene expressed in the primitive streak. Mech. Dev. 87, 189–192 (1999).
    Article CAS PubMed Google Scholar
  18. Rossant, J. & Tamura-Lis, W. Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast. J. Embryol. Exp. Morphol. 62, 217– 227 (1981).
    CAS PubMed Google Scholar
  19. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249 (1995).
    Article ADS CAS PubMed Google Scholar
  20. Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95 , 5082–5087 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  21. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).
    Article CAS PubMed Google Scholar
  22. Ding, J. et al. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395, 702 –707 (1998).
    Article ADS CAS PubMed Google Scholar
  23. Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).
    Article CAS PubMed Google Scholar
  24. Wilson, V., Manson, L., Skarnes, W. C. & Beddington, R. S. The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121, 877 –886 (1995).
    CAS PubMed Google Scholar
  25. Wilson, V., Rashbass, P. & Beddington, R. S. Chimeric analysis of T (Brachyury) gene function. Development 117, 1321– 1331 (1993).
    CAS PubMed Google Scholar
  26. Ciruna, B. G., Schwartz, L., Harpal, K., Yamaguchi, T. P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829– 2841 (1997).
    CAS PubMed Google Scholar
  27. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834– 1846 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  28. Wattler, S., Russ, A., Evans, M. & Nehls, M. A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members of the T-box family. Genomics 48, 24–33 (1998).
    Article CAS PubMed Google Scholar
  29. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, New York, 1994).
    Google Scholar

Download references