Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels (original) (raw)

References

  1. Murphy, T. H., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).
    Article CAS Google Scholar
  2. Artalejo, C. R., Adams, M. E. & Fox, A. P. Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76 (1994).
    Article CAS Google Scholar
  3. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–139 (1988).
    Article CAS Google Scholar
  4. Hadley, R. W. & Lederer, W. J. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms. J. Physiol. (Lond.) 257–268 (1991).
  5. Marban, E. & Tsien, R. W. Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J. Physiol. (Lond.) 329, 589–614 (1982).
    Article CAS Google Scholar
  6. McCarron, J. G. et al. Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II. Nature 357, 74–77 (1992).
    Article CAS Google Scholar
  7. Xiao, R. P., Cheng, H., Lederer, W. J., Suzuki, T. & Lakatta, E. G. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc. Natl Acad. Sci.USA 91, 9659–9663 (1994).
    Article CAS Google Scholar
  8. Yuan, W. & Bers, D. M. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am. J. Physiol. 267, H982–H993 (1994).
    CAS PubMed Google Scholar
  9. Anderson, M. E., Braun, A. P. & Schulman, H. & Premack, B. A. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ. Res. 75 854–861 (1994).
    Article CAS Google Scholar
  10. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).
    Article CAS Google Scholar
  11. Payne, M. E. et al. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J. Biol. Chem. 263, 7190–7195 (1988).
    CAS Google Scholar
  12. Braun, A. P. & Schulman, H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J. Physiol. (Lond.) 488, 37–55 (1995).
    Article CAS Google Scholar
  13. Sculptoreanu, A., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364, 240–243 (1993).
    Article CAS Google Scholar
  14. Lacerda, A. E., Rampe, D. & Brown, A. M. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335, 249–251 (1988).
    Article CAS Google Scholar
  15. Odermatt, A., Kurzydlowski, K. & MacLennan, D. H. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J. Biol. Chem. 271, 14206–14213 (1996).
    Article CAS Google Scholar
  16. Hain, J., Nath, S., Mayrleitner, M., Fleischer, S. & Schindler, H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. Biophys. J. 67, 1823–1833 (1994).
    Article CAS Google Scholar
  17. Wu, Y., MacMillan, L. B., McNeill, R. B., Colbran, R. J. & Anderson, M. E. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am. J. Physiol. 276, H2168–H2178 (1999).
    CAS PubMed Google Scholar
  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).
    Article CAS Google Scholar
  19. Chao, S. H., Suzuki, Y., Zysk, J. R. & Cheung, W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82 (1984).
    CAS PubMed Google Scholar
  20. Hess, P., Lansman, J. P. & Tsien, R. W. Different modes of Ca channel gating behavior favoured by dihydropyridine Ca agonists and antagonists. Nature 311, 538–544 (1984).
    Article CAS Google Scholar
  21. Li, L., Satoh, H., Ginsburg, K. S. & Bers, D. M. The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J. Physiol. (Lond.) 501, 17–31 (1997).
    Article CAS Google Scholar
  22. Anderson, M. E. et al. KN-93, an inhibitor of multifunctional Ca 2+/calmodulin dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp. Ther. 287, 996–1006 (1998).
    CAS PubMed Google Scholar
  23. Mazur, A., Roden, D. M. & Anderson, M. E. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents Torsade de Pointes in rabbits. Circulation 100, 2437–2442 (1999).
    Article CAS Google Scholar
  24. Yue, D. T., Herzig, S. & Marban, E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc. Natl Acad. Sci.USA 87, 753–757 (1990).
    Article CAS Google Scholar
  25. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).
    CAS Google Scholar
  26. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).
    Article CAS Google Scholar
  27. Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3–29 (1994).
    Article CAS Google Scholar
  28. VanDongen, A. M. A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys. J. 70, 1303–1315 (1996).
    Article CAS Google Scholar
  29. Ishida, A. & Fujisawa, H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J. Biol. Chem. 270, 2163–2170 (1995).
    Article CAS Google Scholar
  30. Glass, D. B., Cheng, H. C., Mende-Mueller, L., Reed, J. & Walsh, D. A. Primary structural determinants essential for potent inhibition of cAMP-dependent protein kinase by inhibitory peptides corresponding to the active portion of the heat-stable inhibitor protein. J. Biol. Chem. 264, 8802–8810 (1989).
    CAS PubMed Google Scholar
  31. House, C. & Kemp, B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238, 1726–1728 (1987).
    Article CAS Google Scholar
  32. Gupta, R. C. & Kranias, E. G. Purification and characterization of a calcium-calmodulin-dependent phospholamban kinase from canine myocardium. Biochemistry 28, 5909–5916 (1989).
    Article CAS Google Scholar
  33. Sigworth, F. J. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).
    Article CAS Google Scholar

Download references