Glycosyltransferase activity of Fringe modulates Notch–Delta interactions (original) (raw)

References

  1. Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441 ( 1999).
    Article CAS PubMed Google Scholar
  2. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch–ligand interactions. Nature 387, 908–913 (1997).
    Article ADS CAS PubMed Google Scholar
  3. Johnston, S. H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124 , 2245–2254 (1997).
    CAS PubMed Google Scholar
  4. Fleming, R. J., Gu, Y. & Hukriede, N. A. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124, 2973–2981 (1997).
    CAS PubMed Google Scholar
  5. Rodriguez-Esteban, C. et al. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360–366 (1997).
    Article ADS CAS PubMed Google Scholar
  6. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).
    Article ADS CAS PubMed Google Scholar
  7. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374– 377 (1998).
    Article ADS CAS PubMed Google Scholar
  8. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377– 381 (1998).
    Article ADS CAS PubMed Google Scholar
  9. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813– 2824 (1995).
    CAS PubMed Google Scholar
  10. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 ( 1995).
    CAS PubMed Google Scholar
  11. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction and symmetrical gene activation at the dorsal/ventral boundary of the developing Drosophila wing. Cell 82, 795– 802 (1995).
    Article CAS PubMed Google Scholar
  12. Doherty, D., Fenger, G., Younger-Shepherd, S., Jan, L. -Y. & Jan, Y.-N. Dorsal and ventral cells respond differently to the Notch ligands Delta and Serrate during Drosophila wing development. Genes Dev. 10, 421–434 (1996).
    Article CAS PubMed Google Scholar
  13. de Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122 , 359–369 (1996).
    CAS PubMed Google Scholar
  14. Irvine, K. & Wieschaus, E. fringe, a boundary specific signalling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).
    Article CAS PubMed Google Scholar
  15. Wu, J. Y., Wen, L., Zhang, W. J. & Rao, Y. The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science 273, 355–358 ( 1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  16. Yuan, Y. P., Schultz, J., Mlodzik, M. & Bork, P. Secreted fringe-like signaling molecules may be glycosyltransferases. Cell 88, 9–11 (1997).
    Article CAS PubMed Google Scholar
  17. Amado, M., Almeida, R., Schwientek, T. & Clausen, H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim. Biophys. Acta 1473, 35–53 ( 1999).
    Article CAS PubMed Google Scholar
  18. Röttger, S. et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111, 45– 60 (1998).
    PubMed Google Scholar
  19. Nilsson, T. & Warren, G. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr. Opin. Cell Biol. 6, 517–521 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  20. Breton, C. & Imberty, A. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9, 563– 571 (1999).
    Article CAS PubMed Google Scholar
  21. Gastinel, L. N., Cambillau, C. & Bourne, Y. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18, 3546–3557 ( 1999).
    Article CAS PubMed PubMed Central Google Scholar
  22. Harris, R. J. & Spellman, M. W. O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 3 , 219–224 (1993).
    Article CAS PubMed Google Scholar
  23. Moloney, D. J. & Haltiwanger, R. S. The O-l fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9, 679–687 (1999).
    Article CAS PubMed Google Scholar
  24. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).
    Article CAS PubMed Google Scholar
  25. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  26. Goode, S. & Perrimon, N. Brainiac and fringe are similar pioneer proteins that impart specificity to notch signaling during Drosophila development. Cold Spring Harb. Symp. Quant. Biol. 62, 177–184 (1997).
    Article CAS PubMed Google Scholar
  27. Bergemann, A. D., Cheng, H. J., Brambilla, R., Klein, R. & Flanagan, J. G. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol. Cell. Biol. 15, 4921–4929 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  28. Amado, M. et al. A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β- N acetyl-galactosamine β-1,3-galactosyltransferase family. J. Biol. Chem. 273, 12770–12778 (1998).
    Article CAS PubMed Google Scholar
  29. Brückner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511 –524 (1999).
    Article PubMed Google Scholar
  30. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997).
    Article ADS CAS PubMed PubMed Central Google Scholar

Download references