Purves, D. Body and Brain: A Trophic Theory of Neural Connections (Harvard Press, Cambridge, Massachusetts, 1988). Google Scholar
Martin, D. P. et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol.106, 829–844 ( 1988). ArticleCASPubMed Google Scholar
Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans : past, present and future. Trends Genet.14, 410–416 (1998). ArticleCASPubMed Google Scholar
Gagliardini, V. et al. Prevention of vertebrate neuronal death by the crmA gene. Science263, 826– 828 (1994). ArticleADSCASPubMed Google Scholar
Merry, D. E. & Korsmeyer, S. J. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci.20, 245– 267 (1997). ArticleCASPubMed Google Scholar
Garcia, I., Martinou, I., Tsujimoto, Y. & Martinou, J. C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science258, 302– 304 (1992). ArticleADSCASPubMed Google Scholar
Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron13, 1017–1030 ( 1994). ArticleCASPubMed Google Scholar
Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J. & Martinou, J. C. Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA91, 3309–3313 (1994). ArticleADSCASPubMedPubMed Central Google Scholar
Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci.15, 7727–7733 (1995). ArticleCASPubMedPubMed Central Google Scholar
Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell75, 229–240 (1993). ArticleCASPubMed Google Scholar
Michaelidis, T. M. et al. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development . Neuron17, 75–89 (1996). ArticleCASPubMed Google Scholar
Gonzalez-Garcia, M. et al. bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc. Natl Acad. Sci. USA92, 4304–4308 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science267, 1506 –1510 (1995). ArticleADSCASPubMed Google Scholar
Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron17, 401– 411 (1996). ArticleCASPubMed Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3 . Cell90, 405–413 (1997). ArticleCASPubMed Google Scholar
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). ArticleCASPubMed Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997). ArticleCASPubMed Google Scholar
Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol.149, 613–622 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature403, 98–103 (2000). ArticleADSCASPubMed Google Scholar
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384, 368–372 (1996). ArticleADSCASPubMed Google Scholar
Kuida, K. et al. Reduced apoptosis and cytochrome _c_-mediated caspase activation in mice lacking caspase 9. Cell94, 325– 337 (1998). ArticleCASPubMed Google Scholar
Barbacid, M. Structural and functional properties of the TRK family of neurotrophin receptors . Ann. NY Acad. Sci.766, 442– 458 (1995). ArticleADSCASPubMed Google Scholar
Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem.67, 481–507 ( 1998). ArticleCASPubMed Google Scholar
Yao, R. & Cooper, G. M. Regulation of the Ras signaling pathway by GTPase-activating protein in PC12 cells. Oncogene11, 1607–1614 (1995). CASPubMed Google Scholar
Philpott, K. L., McCarthy, M. J., Klippel, A. & Rubin, L. L. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol.139, 809–815 (1997). ArticleCASPubMedPubMed Central Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927 (1999). ArticleCASPubMed Google Scholar
Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell80, 285 –291 (1995). ArticleCASPubMed Google Scholar
Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997). ArticleCASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Du, K. & Montminy, M. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem.273, 32377–32379 (1998). ArticleCASPubMed Google Scholar
Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science286, 2358–2361 ( 1999). ArticleCASPubMed Google Scholar
Kane, L. P., Shapiro, V. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol.9, 601–604 (1999). ArticleCASPubMed Google Scholar
Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science286, 1358–1362 (1999). ArticleCASPubMed Google Scholar
Koike, T., Martin, D. P. & Johnson, E. M. Jr Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl Acad. Sci. USA86, 6421 –6425 (1989). ArticleADSCASPubMedPubMed Central Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790 (1999). ArticleCASPubMed Google Scholar
Vaillant, A. R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol.146, 955–966 (1999). ArticleCASPubMedPubMed Central Google Scholar
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270, 1326–1331 (1995). ArticleADSCASPubMed Google Scholar
Estus, S. et al. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J. Cell Biol.127, 1717–1727 (1994). ArticleCASPubMed Google Scholar
Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron14, 927– 939 (1995). ArticleCASPubMed Google Scholar
Imaizumi, K. et al. The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J. Biol. Chem.274, 7975– 7981 (1999). ArticleCASPubMed Google Scholar
Putcha, G. V., Deshmukh, M. & Johnson, E. M. Jr BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases . J. Neurosci.19, 7476– 7485 (1999). ArticleCASPubMedPubMed Central Google Scholar
Deshmukh, M. & Johnson, E. M. Jr Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron21, 695–705 (1998). ArticleCASPubMed Google Scholar
Dechant, G. & Barde, Y. A. Signalling through the neurotrophin receptor p75NTR. Curr. Opin. Neurobiol.7, 413–418 (1997). ArticleCASPubMed Google Scholar
Frade, J. M., Rodriguez-Tebar, A. & Barde, Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature383, 166–168 (1996). ArticleADSCASPubMed Google Scholar
Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T. & Chao, M. V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature383, 716– 719 (1996). ArticleADSCASPubMed Google Scholar
Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol.140, 911–923 (1998). ArticleCASPubMedPubMed Central Google Scholar
Davey, F. & Davies, A. M. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons . Curr. Biol.8, 915–918 (1998). ArticleCASPubMed Google Scholar
Li, Y., Chopp, M., Jiang, N., Zhang, Z. G. & Zaloga, C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke26, 1252–1257; discussion 1257–1258 (1995). ArticleCASPubMed Google Scholar
Charriaut-Marlangue, C. et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J. Cereb. Blood Flow Metab.16, 186–194 ( 1996). ArticleCASPubMed Google Scholar
Namura, S. et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci.18, 3659–3668 (1998). ArticleCASPubMedPubMed Central Google Scholar
Martin, L. J. et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull.46, 281– 309 (1998). ArticleCASPubMed Google Scholar
Su, J. H., Anderson, A. J., Cummings, B. J. & Cotman, C. W. Immunohistochemcial evidence for apoptosis in Alzheimer's disease. Neuroreport5, 2529–2533 (1994). ArticleCASPubMed Google Scholar
Troncoso, J. C., Sukhov, R. R., Kawas, C. H. & Koliatsos, V. E. In situ labeling of dying cortical neurons in normal aging and in Alzheimer's disease: correlations with senile plaques and disease progression. J. Neuropathol. Exp. Med.55, 1134– 1142 (1996). ArticleCAS Google Scholar
Selkoe, D. J. Alzheimer's disease: genotypes, phenotypes and treatments. Science275, 630–631 ( 1997). ArticleCASPubMed Google Scholar
Yankner, B. A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron16, 921–932 ( 1996). ArticleCASPubMed Google Scholar
Geula, G. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med.4, 827– 831 (1998). ArticleCASPubMed Google Scholar
Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell77, 817–827 (1994). ArticleCASPubMed Google Scholar
Mattson, M. P., Tomaselli, K. J. & Rydel, R. E. Calcium-destablizing and neurodegenerative effect of aggregate beta-amyloid peptide are attenuated by basic FGF. Brain Res.621, 35–49 ( 1993). ArticleCASPubMed Google Scholar
Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA90 , 7951–7955 (1993). ArticleADSCASPubMedPubMed Central Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685– 691 (1996). ArticleADSCASPubMed Google Scholar
Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest.100, 2333–2340 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lorenzo, A. et al. Amyloid-β interacts with the amyloid precursor protein: a potential toxic mechansim in Alzheimer's disease. Nature Neurosci.3, 460–464 ( 2000). ArticleCASPubMed Google Scholar
Estus, S. et al. Aggegated amyloid-beta protein induces cortical neuronal apoptosis and concomitant 'apoptotic' pattern of gene induction. J. Neurosci.17, 7736–7745 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature375, 754–760 (1995). ArticleADSCASPubMed Google Scholar
Levy-Lahad, E. et al. Candidate gene for chromosome 1 familial Alzheimer's disease locus. Science269, 973– 977 (1995). ArticleADSCASPubMed Google Scholar
Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet.32, 461–493 (1998). ArticleCASPubMed Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 ( 1996). ArticleCASPubMed Google Scholar
Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature398, 513–517 ( 1999). ArticleADSCASPubMed Google Scholar
Li, Y. M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature405, 689–694 (2000). ArticleADSCASPubMed Google Scholar
Mattson, M. P., Guo, Q., Furukawa, K. & Pedersen, W. A. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease . J. Neurochem.70, 1–14 (1998). ArticleCASPubMed Google Scholar
Giulian, D. et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci.16, 6021–6037 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tan, J. et al. Microglial activation resulting from CD40–CD40L interaction after beta-amyloid stimulation. Science286, 2352–2355 (1999). ArticleCASPubMed Google Scholar
Brown, D. R., Schmidt, B. & Kretzschmer, H. A role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature380, 345 –347 (1996). ArticleADSCASPubMed Google Scholar
Gonzalez-Scarano, F. B. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci.22, 219–240 (1999). ArticleCASPubMed Google Scholar
Ohagen, A. et al. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J. Virol.73, 897– 906 (1999). CASPubMedPubMed Central Google Scholar
Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell90, 549–558 (1997). ArticleCASPubMed Google Scholar
Lunkes, A. M. Polyglutamines, nuclear inclusions and neurodegeneration. Nature Med.3, 1201–1202 ( 1997). ArticleCASPubMed Google Scholar
DiFiglia, M. et al. Aggregation of huntington in neuronal intranuclear inclusions and dystrophic neurites in brain. Science277, 1990–1993 (1997). ArticleCASPubMed Google Scholar
Orr, H. T. & Zoghbi, H. Y. Reversing neurodegeneration: a promise unfolds. Cell101, (2000 ).
Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell90, 537–548 ( 1997). ArticleCASPubMed Google Scholar
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell95, 55–66 (1998). ArticleCASPubMed Google Scholar
Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell95, 41–53 (1998). ArticleCASPubMed Google Scholar
Sanchez, L. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron22, 623– 633 (1999). ArticleCASPubMed Google Scholar
Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature399, 204–205, 207 (1999). ArticleCAS Google Scholar
Vonsattel, J. P. et al. Neuropathological classification of Huntington's diesease . J. Neuropathol. Exp. Neurol.44, 559– 577 (1985). ArticleCASPubMed Google Scholar
Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell87, 493–506 ( 1996). ArticleCASPubMed Google Scholar
Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell101, 57–66 (2000). ArticleCASPubMed Google Scholar
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362, 59–62 (1993). ArticleADSCASPubMed Google Scholar
Cleveland, D. W. From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron24, 515–520 ( 1999). ArticleCASPubMed Google Scholar
Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis covert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl Acad. Sci. USA92, 3024–3028 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Pasinelli, P. et al. Caspase-1 is activated in neuronl cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase . Proc. Natl Acad. Sci. USA95, 15763– 15768 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis . Science277, 559–562 (1997). ArticleCASPubMed Google Scholar
Li, M., Ona, V. O., Guegan, C. & Chen, M. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science288, 335–339 ( 2000). ArticleADSCASPubMed Google Scholar
Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Juan, J. Inhibition of ICE slows ALS in mice . Nature388, 31 ( 1997). ArticleADSCASPubMed Google Scholar
Liu, X. H. et al. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic–ischemic brain damage. J. Cereb. Blood Flow Metab.19, 1099–1108 (1999). ArticleCASPubMed Google Scholar
Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell94, 339–352 (1998). ArticleCASPubMed Google Scholar
Lee, V. M. Y. & Trojanowski, J. Q. Neurodegenerative tauopathies: human disease and transgenic mouse models. Neuron24, 507–510 ( 1999). ArticleCASPubMed Google Scholar
Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402, 615– 622 (1999). ArticleADSCASPubMed Google Scholar