Bonner, J. et al. Functional organization of the mammalian genome. Cold Spring Harbor Symp. Quant. Biol.38, 303– 310 (1973). Article Google Scholar
Davidson, E. H., Hough, B. R., Amenson, C. S. & Britten, R. J. General interspersion of repetitive with nonrepetitive sequence elements in the DNA of Xenopus. J. Mol. Biol.77, 1–23 (1973). ArticleCASPubMed Google Scholar
John, B. & Miklos, G. L. G. The Eukaryotic Genome in Development and Evolution 1–416 (Allen and Unwin, London, 1988). Book Google Scholar
Cavalier–Smith, T. The Evolution of Genome Size (John Wiley, New York, 1985). Google Scholar
Bliss, M. William Osler: A Life in Medicine (Oxford, New York, 1999). Google Scholar
Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the C-value paradox. J. Cell Sci.34, 247–278 ( 1978). CASPubMed Google Scholar
Vinogradov, A. E. Buffering: A possible passive-homeostasis role for redundant DNA. J. Theor. Biol.193, 197–199 (1998). ArticleCASPubMed Google Scholar
Ohno, S. in Evolution of Genetic Systems, Brookhaven Symp. Biol. (ed. Smith, H. H.) 366–370 (1972). Google Scholar
Orgel, L. E. & Crick, F. H. C. Selfish DNA: the ultimate parasite . Nature284, 604–607 (1980). ArticleCASPubMed Google Scholar
Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature284, 601–603 (1980). ArticleCASPubMed Google Scholar
Cavalier-Smith, T. & Beaton, M. J. The skeletal function of non-genic nuclear DNA: New evidence from ancient cell chimaeras . Genetica106, 3–13 (1999). ArticleCASPubMed Google Scholar
Beaton, M. J. & Cavalier-Smith, T. Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes . Proc. R. Soc. Lond. B266, 2053– 2059 (1999). ArticleCAS Google Scholar
Lozovskaya, E. R., Nurminsky, D. I., Petrov, D. A. & Hartl, D. L. Genome size as a mutation-selection-drift process. Genes Genet. Syst.74, 201–207 ( 1999). ArticleCASPubMed Google Scholar
Laurent, A. M., Puechberty, J. & Roizes, G. Hypothesis: for the worst and for the best, L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences . Chromosome Res.7, 305– 317 (1999). ArticleCASPubMed Google Scholar
Csink, A. K. & Henikoff, S. Something from nothing: The evolution and utility of satellite repeats. Trends Genet.14, 200–204 (1998). ArticleCASPubMed Google Scholar
Russo, C. A. M., Takezaki, N. & Nei, M. Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol.12, 391– 404 (1995). CASPubMed Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 ( 2000). ArticlePubMed Google Scholar
Ogata, H., Fujibuchi, W. & Kanehisa, M. The size differences among mammalian introns are due to the accumulation of small deletions. FEBS Lett.390, 99–103 (1996). ArticleCASPubMed Google Scholar
Moriyama, E. N., Petrov, D. A. & Hartl, D. L. Genome size and intron size in Drosophila. Mol. Biol. Evol.15, 770–773 (1997). Article Google Scholar
Vinogradov, A. E. Intron–genome size relationship on a large evolutionary scale. J. Mol. Evol.49, 376–384 (1999). ArticleCASPubMed Google Scholar
SanMiguel, P. & Bennetzen, J. L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot.82, 37– 44 (1998). ArticleCAS Google Scholar
Petrov, D. A. & Hartl, D. L. High rate of DNA loss in the D. melanogaster and D. virilis species groups. Mol. Biol. Evol.15, 293–302 (1998). ArticleCASPubMed Google Scholar
San Miguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retro-transposons of maize. Nature Genet.20, 43–45 (1998). ArticleCAS Google Scholar
Andrews, J. D. & Gloor, G. B. A role for the KP leucine zipper in regulating P element transposition in Drosophila melanogaster. Genetics141, 587–594 (1995). CASPubMedPubMed Central Google Scholar
Lohe, A. R. & Hartl, D. L. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation . Mol. Biol. Evol.13, 549– 555 (1996). ArticleCASPubMed Google Scholar
Stellwagen, A. E. & Craig, N. L. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem. Sci.23, 486–490 (1998). ArticleCASPubMed Google Scholar
Braam, L. A. M., Goryshin, I. Y. & Reznikoff, W. S. A mechanism for Tn_5_ inhibition: Carboxyl-terminal dimerization. J. Biol. Chem.274, 86– 92 (1999). ArticleCAS Google Scholar
Sakai, J. S., Kleckner, N., Yang, X. & Guhathakurta, A. Tn 10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer. EMBO J.19, 776–785 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bennetzen, J. L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol.42, 251–269 (2000). ArticleCASPubMed Google Scholar
Ketting, R. F. & Plasterk, R. H. A. A genetic link between co-suppression and RNA interference in C. elegans. Nature404, 296–298 ( 2000). ArticleCASPubMed Google Scholar
Chaboissiert, M. C., Bucheton, A. & Finnegan, D. J. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl Acad. Sci. USA95, 11781–11785 (1998). Article Google Scholar
Birchler, J. A., Pal-Bhadra, M. & Bhadra, U. Less from more: cosuppression of transposable elements . Nature Genet.21, 148– 149 (1999). ArticleCASPubMed Google Scholar
Jensen, S., Gassama, M. P. & Heidmann, T. Cosuppression of I transposon activity in Drosophila by _I_-containing sense and antisense transgenes. Genetics153, 1767–1774 (1999). CASPubMedPubMed Central Google Scholar
Casavant, N. C. et al. The end of the LINE?: Lack of recent L1 activity in a group of South American rodents. Genetics154, 1809–1817 (2000). CASPubMedPubMed Central Google Scholar
Graur, D., Shuali, Y. & Li, W.-H. Deletions in processes pseudogenes accumulate faster in rodents than in humans. J. Mol. Evol.28, 279–285 (1989). ArticleCASPubMed Google Scholar
Petrov, D. A., Lozovskaya, E. R. & Hartl, D. L. High intrinsic rate of DNA loss in Drosophila . Nature384, 346–349 (1996). ArticleCASPubMed Google Scholar
Petrov, D. A. & Hartl, D. L. Trash DNA is what gets thrown away: High rate of DNA loss in Drosophila. Gene205 , 279–289 (1997). ArticleCASPubMed Google Scholar
Wright, D. A. et al. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics142, 569– 578 (1996). CASPubMedPubMed Central Google Scholar
Petrov, D. A., Sangster, T., Johnston, J. S., Hartl, D. L. & Shaw, K. L. Evidence for DNA loss as a determinant of genome size. Science287, 1060– 1062 (2000). ArticleCASPubMed Google Scholar
Robertson, H. M. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res.10, 192–203 (2000). ArticleCASPubMed Google Scholar
Bensasson, D., Petrov, D. A., Zhang, D. -X., Hartl, D. L. & Hewitt, G. M. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol. Biol. Evol. (in the press).
Simmons, M. J. & Bucholz, L. M. Transposase titration in Drosophila melanogaster : A model of cytotype in the P-M system of hybrid dysgenesis. Proc. Natl Acad. Sci. USA82, 8119–8123 (1985). ArticleCASPubMedPubMed Central Google Scholar
Sawyer, S. A. et al. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics115, 51–63 (1987). CASPubMedPubMed Central Google Scholar