Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence (original) (raw)

References

  1. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclinD/CDK4. Nature 366, 704–707 (1993).
    Article ADS CAS Google Scholar
  2. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).
    Article ADS CAS Google Scholar
  3. Hara, E. et al. Regulation of p16_CDKN2_ expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996).
    Article CAS Google Scholar
  4. Loughran, O. et al. Association of CDKN2A/p16INK4a with human head and neck keratinocyte replicative senescence: relationship of dysfunction to immortality and neoplasia. Oncogene 13, 561–568 (1996).
    CAS PubMed Google Scholar
  5. Reznikoff, C. A. et al. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res. 56, 2886–2890 (1996).
    CAS PubMed Google Scholar
  6. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).
    Article CAS Google Scholar
  7. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019 (1998).
    Article CAS Google Scholar
  8. Zhu, J., Woods, D., McMahon, M. & Bishop, J. M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997–3007 (1998).
    Article CAS Google Scholar
  9. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, 115–117 (1998).
    Google Scholar
  10. Graves, B. J. & Petersen, J. M. Specificity within the ets family of transcription factors. Adv. Cancer Res. 75, 1–55 (1998).
    Article CAS Google Scholar
  11. Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).
    Article CAS Google Scholar
  12. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).
    Article CAS Google Scholar
  13. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).
    Article CAS Google Scholar
  14. Lundberg, A. S., Hahn, W. C., Gupta, P. & Weinberg, R. A. Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12, 705–709 (2000).
    Article CAS Google Scholar
  15. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).
    Article ADS CAS Google Scholar
  16. Sedivy, J. M. Can ends justify the means?: telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc. Natl Acad. Sci. USA 95, 9078–9081 (1998).
    Article ADS CAS Google Scholar
  17. McConnell, B. B., Starborg, M., Brookes, S. & Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351–354 (1998).
    Article CAS Google Scholar
  18. Foos, G., Garcia-Ramirez, J. J., Galang, C. K. & Hauser, C. A. Elevated expression of Ets2 or distinct portions of Ets2 can reverse ras-mediated cellular transformation. J. Biol. Chem. 273, 18871–18880 (1998).
    Article CAS Google Scholar
  19. Dimri, G. P. et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
    Article ADS CAS Google Scholar
  20. Yates, P. R., Atherton, G. T., Deed, R. W., Norton, J. D. & Sharrocks, A. D. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J. 18, 968–976 (1999).
    Article CAS Google Scholar
  21. Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).
    Article CAS Google Scholar
  22. Hara, E. et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 269, 2139–2145 (1994).
    CAS PubMed Google Scholar
  23. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).
    Article ADS CAS Google Scholar
  24. Hara, E. et al. The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Dev. Genet. 18, 161–172 (1996).
    Article CAS Google Scholar
  25. Alani, R. M. et al. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc. Natl Acad. Sci. USA 96, 9637–9641 (1999).
    Article ADS CAS Google Scholar
  26. Jacobs, J. J. L., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).
    Article ADS CAS Google Scholar
  27. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).
    CAS PubMed PubMed Central Google Scholar
  28. Sugimoto, M. et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34SEI-1. Genes Dev. 13, 3027–3033 (1999).
    Article CAS Google Scholar

Download references